Machine Learning and Signal Processing for Advances in Neurotechnology
机器学习和信号处理促进神经技术的进步
基本信息
- 批准号:RGPIN-2016-06633
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For as long as human beings have been able to think, we have been trying to understand our own brains. However, as Emerson M. Pugh points out, ``If the brain were so simple we could understand it, we would be so simple we couldn't.'' Despite this inherent enigma, there has been intense, multi-disciplinary activity directed towards the understanding of the human brain in recent times. Neuroscientists, biochemists, psychologists and others have already been engaged for many decades on this topic, with impressive results. However, only recently have mathematicians and engineers realized that they too have an important role to play in furthering progress in this area.***Much of the activity in brain research may be encapsulated into the term neurotechnology. Neurotechnology has to do with the development of technologies that are designed to improve and repair brain function, or that facilitate the direct interaction between the human brain and a computer, i.e., brain-computer interfaces (BCIs). In this vein, this proposal deals with the application of mathematical and engineering principles in the development of new neurotech devices and procedures.****An enticing prospect we offer in the neurotech field is machine learning (ML). Since the brain is too complex to model directly, the machine learning approach in this context operates by constructing a rudimentary mathematical model using only observed data from the brain. The applicant's team has previously used ML analyses of the electroencephalogram (EEG) to diagnose mental illness, and also for BCI applications. Also the applicant's team was the first to develop novel ML methods for identifying effective treatments for major depression.***The mental/neuro health field is rife with opportunity for applications of ML. We intend to develop novel ML methods for predicting recovery from coma. We also intend to extend our newly developed ML algorithms to enhance treatments for mental illness. Thirdly, we intend to develop improved BCI devices using a novel interactive training approach where the human and the computer adapt to each other. We will also develop new ML tools to aid in accomplishing these goals. The first such tool is to extend the capabilities of our newly developed ML algorithms, and the second is to identify new, highly salient biomarkers from the EEG that represent networks in the brain.***The ML approach brings a fresh new engineering-centred perspective to solving the long-standing difficult neurotech problems we have proposed. Our machine learning approaches show significant promise for innovation in health care and in developing new BCI devices. Furthermore, our proposed ML tools are not only crucial to us achieving our goals, but will also offer the ML community new algorithms and techniques. Thus this research offers Canada the potential to assert its presence in the neurotech field by enhancing and improving the use of ML methods in brain research.***********
自从人类能够思考以来,我们就一直在试图了解我们自己的大脑。然而,正如爱默生·M·普尔所指出的,“如果大脑如此简单,我们可以理解它,我们也会如此简单,以至于我们不能理解它。”尽管存在这一内在的谜团,但近年来,针对人脑的理解开展了激烈的、多学科的活动。神经学家、生物化学家、心理学家和其他人已经在这个主题上投入了几十年的时间,取得了令人印象深刻的成果。然而,直到最近,数学家和工程师才意识到,他们在促进这一领域的进步方面也发挥着重要作用。*大脑研究中的许多活动可能被概括为术语神经技术。神经技术涉及旨在改善和修复大脑功能的技术的发展,或促进人脑和计算机之间的直接交互,即脑机接口(BCI)。按照这个思路,这项建议涉及到数学和工程原理在开发新的神经技术设备和程序中的应用。*我们在神经技术领域提供的一个诱人的前景是机器学习(ML)。由于大脑太复杂,无法直接建模,因此在这种情况下,机器学习方法的运作方式是仅使用来自大脑的观察数据构建一个基本的数学模型。申请人的团队此前曾使用脑电(EEG)的ML分析来诊断精神疾病,也用于脑机接口应用。此外,申请者的团队是第一个开发新的ML方法来确定有效治疗严重抑郁症的方法。*精神/神经健康领域充满了ML应用的机会。我们打算开发新的ML方法来预测昏迷的恢复。我们还打算扩展我们新开发的ML算法,以增强精神疾病的治疗。第三,我们打算使用一种新的交互训练方法来开发改进的脑-机接口设备,其中人和计算机相互适应。我们还将开发新的ML工具来帮助实现这些目标。第一个这样的工具是扩展我们新开发的ML算法的能力,第二个是从EEG中识别代表大脑网络的新的、高度显著的生物标记物。*ML方法为解决我们提出的长期存在的难题带来了一个以工程为中心的新视角。我们的机器学习方法在医疗保健创新和开发新的脑机接口设备方面显示出巨大的前景。此外,我们建议的ML工具不仅对我们实现目标至关重要,而且还将为ML社区提供新的算法和技术。因此,这项研究为加拿大提供了通过加强和改进大脑研究中ML方法的使用来确立其在神经技术领域的存在的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reilly, James其他文献
The Effects of Sex Differences and Hormonal Contraception on Outcomes after Collegiate Sports-Related Concussion
- DOI:
10.1089/neu.2017.5453 - 发表时间:
2018-03-27 - 期刊:
- 影响因子:4.2
- 作者:
Gallagher, Virginia;Kramer, Natalie;Reilly, James - 通讯作者:
Reilly, James
Effect of Alendronate on Pseudomembrane Cytokine Expression in Patients with Aseptic Osteolysis
- DOI:
10.1016/j.arth.2009.07.029 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:3.5
- 作者:
Holt, Graeme;Reilly, James;Meek, R. M. Dominic - 通讯作者:
Meek, R. M. Dominic
Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish.
Tulp1缺陷通过影响斑马鱼纤毛发生和激活铁死亡而导致早发性视网膜变性
- DOI:
10.1038/s41419-022-05372-w - 发表时间:
2022-11-17 - 期刊:
- 影响因子:9
- 作者:
Jia, Danna;Gao, Pan;Lv, Yuexia;Huang, Yuwen;Reilly, James;Sun, Kui;Han, Yunqiao;Hu, Hualei;Chen, Xiang;Zhang, Zuxiao;Li, Pei;Luo, Jiong;Shu, Xinhua;Tang, Zhaohui;Liu, Fei;Liu, Mugen;Ren, Xiang - 通讯作者:
Ren, Xiang
A retrospective analysis of the respiratory adjusted shock index to determine the presence of occult shock in trauma patients
- DOI:
10.1097/ta.0000000000001761 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3.4
- 作者:
Caputo, Nicholas;Reilly, James;West, Jason - 通讯作者:
West, Jason
Selling your self? The psychological impact of street sex work and factors affecting support seeking
- DOI:
10.1111/j.1365-2524.2010.00925.x - 发表时间:
2010-09-01 - 期刊:
- 影响因子:2.4
- 作者:
Gorry, Jo;Roen, Katrina;Reilly, James - 通讯作者:
Reilly, James
Reilly, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reilly, James', 18)}}的其他基金
Machine Learning and Signal Processing for Advances in Neurotechnology
机器学习和信号处理促进神经技术的进步
- 批准号:
RGPIN-2016-06633 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Signal Processing for Advances in Neurotechnology
机器学习和信号处理促进神经技术的进步
- 批准号:
RGPIN-2016-06633 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Signal Processing for Advances in Neurotechnology
机器学习和信号处理促进神经技术的进步
- 批准号:
RGPIN-2016-06633 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Signal Processing for Advances in Neurotechnology
机器学习和信号处理促进神经技术的进步
- 批准号:
RGPIN-2016-06633 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
A machine learning app for quitting smoking
一款用于戒烟的机器学习应用程序
- 批准号:
499389-2016 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
Application of machine learning in neuroscience
机器学习在神经科学中的应用
- 批准号:
6567-2011 - 财政年份:2015
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing for an Improved MuSE
改进 MuSE 的信号处理
- 批准号:
466997-2014 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Engage Grants Program
Application of machine learning in neuroscience
机器学习在神经科学中的应用
- 批准号:
6567-2011 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Application of machine learning in neuroscience
机器学习在神经科学中的应用
- 批准号:
6567-2011 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Application of machine learning in neuroscience
机器学习在神经科学中的应用
- 批准号:
6567-2011 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Graph Signal Processing and Graph Machine Learning
图信号处理和图机器学习
- 批准号:
2884089 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Studentship
Intelligent Fiber Sensors via Digital Signal Processing and Machine Learning
通过数字信号处理和机器学习的智能光纤传感器
- 批准号:
RGPIN-2021-02559 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
- 批准号:
2237325 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Improving the Signal Model in Radar-based Image Reconstruction and a Novel Machine Learning Approach for Breast Microwave Imaging
改进基于雷达的图像重建中的信号模型以及乳腺微波成像的新型机器学习方法
- 批准号:
547670-2020 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Precision Beekeeping and Selective Breeding of the Honey Bee Using Multimodal Signal Processing and Machine Learning
利用多模态信号处理和机器学习进行精准养蜂和蜜蜂选择性育种
- 批准号:
548872-2019 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Alliance Grants
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208386 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208385 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Applications of Stochastic Machine Learning and Statistical Signal Processing Approaches to Automatic Music Transcription and Visualisation
随机机器学习和统计信号处理方法在自动音乐转录和可视化中的应用
- 批准号:
2738835 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Studentship
Neural Signal Representations for Physics-Based Machine Learning and Active 3D Imaging
基于物理的机器学习和主动 3D 成像的神经信号表示
- 批准号:
DGECR-2022-00412 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




