Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
基本信息
- 批准号:RGPIN-2018-06323
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I aim to use computer vision and mathematical modeling to better understand the role of geometry in biological composites, such as the mammalian heart wall, and its consequences for mechanical and elecrophysiological function. Myofibers are known to have a helical shape, with the constituent muscle cells, contracting and relaxing in concert to pump blood from the chambers of the heart. This local geometry causes the wringing and upward twisting motion familiar to anyone who has viewed a heart ultrasound scan. However, moving beyond the scale of individual myocytes, much less is known about the collective geometry of heart wall fibers. A deeper theoretical understanding of the properties conferred by myofiber arrangement will improve not only our understanding of heart function and disease caused by injury or other cardiomyopathies, but also that of other biological and man-made composites with helical fibers. ******With empirical fits to mammalian hearts imaged using diffusion Magnetic Resonance Imaging (dMRI), we have shown that heart wall myofibers appear to lie on a special type of minimal surface, the generalized helicoid (Savadjiev et al., PNAS 2012). Minimal surfaces arise in nature due to physical considerations, such as the shape taken on by a film of soap when one dips a wireframe curve into concentrated soap solution. We have posited that helicoidal arrangements of myocytes in the heart wall give it strength while optimizing mechanical function, and we have developed algorithms for fitting minimal surface based models to orientation data obtained from diffusion imaging.******In the current research proposal I consider the hypothesis that helicoidal arrangements of fibers optimize diffusion. Our generalized helicoid model provides parameters by which to describe the curvature of the space of myofibers in which diffusion occurs, following which stochastic diffusion models can be applied to the analysis of heart wall fiber orientation data. I shall examine electophysiological properties related to the contraction wave, as well as the management of potentially dangerous irregular wave patterns in such biological tissues. In parallel I shall look at the more challenging question of understanding the mechanical consequences of helicoidal fiber patterns in biological tissue. Examples from nature, such as the cuticle of an insect, suggest that helicoidal arrangements help dissipate forces from surface contact very efficiently. However, little has been done in terms of mathematical analysis to determine how this occurs, and further, unlike rigid composites, the heart wall is a dynamic deforming structure. I conjecture that the helicoidal arrangement offers optimality properties related to the efficacy of contraction while also dissipating forces within the wall to minimize wear and tear. The results of this research will improve our understanding of biological and man-made fibrous composites.
我的目标是使用计算机视觉和数学建模,以更好地了解几何形状在生物复合材料中的作用,如哺乳动物的心脏壁,以及其对机械和电生理功能的影响。已知肌纤维具有螺旋形状,其中组成肌细胞一致地收缩和放松以从心室泵送血液。这种局部几何形状导致了任何观看过心脏超声扫描的人所熟悉的扭曲和向上扭转运动。然而,超越了单个肌细胞的规模,对心脏壁纤维的集体几何形状知之甚少。对肌纤维排列所赋予的性质的更深入的理论理解不仅将提高我们对心脏功能和由损伤或其他心肌病引起的疾病的理解,而且还将提高我们对其他生物和人造螺旋纤维复合材料的理解。** 通过对使用扩散磁共振成像(dMRI)成像的哺乳动物心脏的经验拟合,我们已经表明心脏壁肌纤维似乎位于特殊类型的最小表面,广义螺旋体上(Savadjiev等人,PNAS 2012)。最小曲面在自然界中的出现是出于物理考虑,例如当将线框曲线浸入浓缩的肥皂溶液中时,肥皂膜所呈现的形状。我们已经假设,在优化机械功能的同时,心脏壁中肌细胞的螺旋形排列赋予其强度,并且我们已经开发了用于将基于最小表面的模型拟合到从扩散成像获得的方向数据的算法。在目前的研究建议,我考虑的假设,螺旋排列的纤维优化扩散。我们的广义螺旋面模型提供了参数,通过该参数来描述扩散发生的肌纤维空间的曲率,随后随机扩散模型可以应用于心壁纤维取向数据的分析。我将研究与收缩波有关的电生理特性,以及对这种生物组织中潜在危险的不规则波模式的管理。与此同时,我将研究更具挑战性的问题,即理解生物组织中螺旋纤维模式的机械后果。来自自然界的例子,例如昆虫的表皮,表明螺旋状排列有助于非常有效地消散来自表面接触的力。然而,几乎没有数学分析来确定这是如何发生的,而且,与刚性复合材料不同,心脏壁是一个动态变形结构。我推测螺旋排列提供了与收缩功效相关的最佳特性,同时还分散了壁内的力以最大限度地减少磨损。这项研究的结果将提高我们对生物和人造纤维复合材料的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddiqi, Kaleem其他文献
A geometric flow for segmenting vasculature in proton-density weighted MRI
- DOI:
10.1016/j.media.2008.02.003 - 发表时间:
2008-08-01 - 期刊:
- 影响因子:10.9
- 作者:
Descoteaux, Maxime;Collins, D. Louis;Siddiqi, Kaleem - 通讯作者:
Siddiqi, Kaleem
Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls.
- DOI:
10.15252/embj.2022113288 - 发表时间:
2023-10-04 - 期刊:
- 影响因子:11.4
- 作者:
Dileep, Drisya;Syed, Tabish A.;Sloan, Tyler F. W.;Dhandapany, Perundurai S.;Siddiqi, Kaleem;Sirajuddin, Minhajuddin - 通讯作者:
Sirajuddin, Minhajuddin
Heart wall myofibers are arranged in minimal surfaces to optimize organ function
- DOI:
10.1073/pnas.1120785109 - 发表时间:
2012-06-12 - 期刊:
- 影响因子:11.1
- 作者:
Savadjiev, Peter;Strijkers, Gustav J.;Siddiqi, Kaleem - 通讯作者:
Siddiqi, Kaleem
3D curve inference for diffusion MRI regularization and fibre tractography
- DOI:
10.1016/j.media.2006.06.009 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:10.9
- 作者:
Savadjiev, Peter;Campbell, Jennifer S. W.;Siddiqi, Kaleem - 通讯作者:
Siddiqi, Kaleem
White matter fiber analysis using kernel dictionary learning and sparsity priors
- DOI:
10.1016/j.patcog.2019.06.002 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:8
- 作者:
Kumar, Kuldeep;Siddiqi, Kaleem;Desrosiers, Christian - 通讯作者:
Desrosiers, Christian
Siddiqi, Kaleem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddiqi, Kaleem', 18)}}的其他基金
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
522584-2018 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
522584-2018 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Minimal Surfaces in the Heart
心脏的最小表面
- 批准号:
183831-2013 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Medical Image Analysis
医学图像分析 NSERC CREATE 程序
- 批准号:
414043-2012 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Training Experience
Minimal Surfaces in the Heart
心脏的最小表面
- 批准号:
183831-2013 - 财政年份:2016
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE Program in Medical Image Analysis
医学图像分析 NSERC CREATE 程序
- 批准号:
414043-2012 - 财政年份:2016
- 资助金额:
$ 4.66万 - 项目类别:
Collaborative Research and Training Experience
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
- 批准号:
2211908 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Geometry Modeling using AI for Fast and High Accurate Radiation Simulator
使用 AI 进行动态几何建模,实现快速、高精度的辐射模拟器
- 批准号:
22K03653 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
- 批准号:
2124929 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Standard Grant
Real-Time Modeling and Registration of Dynamic Geometry
动态几何的实时建模和配准
- 批准号:
RGPIN-2016-05786 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Modeling Uncertainties for Geometry Processing
职业:几何处理的不确定性建模
- 批准号:
2047677 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Continuing Grant
A Comparative Framework for Modeling the Low-Dimensional Geometry of Neural Population States
神经群体状态低维几何建模的比较框架
- 批准号:
10007243 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
- 批准号:
RGPIN-2018-06323 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Real-Time Modeling and Registration of Dynamic Geometry
动态几何的实时建模和配准
- 批准号:
RGPIN-2016-05786 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual