Minimal Surfaces in the Heart

心脏的最小表面

基本信息

  • 批准号:
    183831-2013
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The modeling of dense collections of close to parallel curves is not obvious. As an example, consider the geometry of a tuft of hair. It is not the precise manner in which a single hair strand curves that is relevant, but rather, it is the sense in which a bundle of strands bends and twists together that matters. The same observation holds for fibrous composites in biology, including muscle fibers in the mammalian heart wall. Whereas it is known that individual myofibers wind as helices around the ventricles of the heart, a multitude of such fibers must be arranged smoothly and regularly to operate as an integrated functional unit as the heart beats. Current models of myofiber orientation across the heart wall suggest groupings into sheets or bands, but the precise geometry of bundles of myofibers is unknown. We have recently shown that this arrangement takes the form of a special minimal surface, the generalized helicoid, closing the gap between individual myofibers and their collective wall structure. Mathematically this explains how myofibers are bundled in the heart wall while economizing fiber length and optimizing ventricular ejection volume as they contract. Minimal surfaces of this type arise in nature to optimize physical resources. A more familiar example is the shape taken by the film that results from dipping a closed wireframe in a solution of soap. The proposed research program shall investigate several extensions and applications of minimal surface models to computational anatomy including: 1) the consideration of an appropriate notion of transport to allow the local frame of a single minimal surface to be rotated to the location of neighboring positions in the heart, 2) the development of novel numerical fitting techniques to allow us to apply the model to larger populations than we have presently considered, and 3) the statistical characterization of the geometry of fibers in normal hearts versus that of hearts affected by infarctions and the onset of related diseases. Minimal surface theory provides a novel foundation for analyzing the fibrous composite of the heart wall, and thus could also be applied more broadly to heart tissue engineering, shape analysis in computational anatomy and related problems in computer vision.
密集的平行曲线集合的建模并不明显。例如,考虑一簇头发的几何形状。这不是一根头发弯曲的精确方式,而是一束头发弯曲和扭曲在一起的感觉。同样的观察结果也适用于生物学中的纤维复合材料,包括哺乳动物心壁中的肌肉纤维。尽管已知单个肌纤维以螺旋状缠绕在心脏的心室周围,但大量这样的纤维必须平滑且有规律地排列以在心脏跳动时作为集成功能单元来操作。目前的模型肌纤维的方向在整个心脏壁建议分组成片或带,但束的肌纤维的精确几何形状是未知的。我们最近表明,这种安排采取了一种特殊的最小表面,广义螺旋面的形式,关闭个别肌纤维和他们的集体壁结构之间的差距。从数学上讲,这解释了肌纤维如何在心脏壁中捆绑,同时在收缩时节省纤维长度并优化心室射血容量。这种类型的最小表面在自然界中出现,以优化物理资源。一个更熟悉的例子是将封闭的线框浸入肥皂溶液中所形成的薄膜形状。拟议的研究计划将调查最小表面模型的几个扩展和应用,包括计算解剖学:1)考虑适当的传输概念以允许单个最小表面的局部框架旋转到心脏中的相邻位置的位置,2)新的数值拟合技术的发展,使我们能够将模型应用于比我们目前考虑的更大的群体,和3)正常心脏中纤维几何形状与受梗塞和相关疾病发作影响的心脏中纤维几何形状的统计特征。最小曲面理论为分析心脏壁的纤维复合材料提供了一个新的基础,因此也可以更广泛地应用于心脏组织工程、计算解剖学中的形状分析以及计算机视觉中的相关问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddiqi, Kaleem其他文献

A geometric flow for segmenting vasculature in proton-density weighted MRI
  • DOI:
    10.1016/j.media.2008.02.003
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Descoteaux, Maxime;Collins, D. Louis;Siddiqi, Kaleem
  • 通讯作者:
    Siddiqi, Kaleem
Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls.
  • DOI:
    10.15252/embj.2022113288
  • 发表时间:
    2023-10-04
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Dileep, Drisya;Syed, Tabish A.;Sloan, Tyler F. W.;Dhandapany, Perundurai S.;Siddiqi, Kaleem;Sirajuddin, Minhajuddin
  • 通讯作者:
    Sirajuddin, Minhajuddin
Heart wall myofibers are arranged in minimal surfaces to optimize organ function
3D curve inference for diffusion MRI regularization and fibre tractography
  • DOI:
    10.1016/j.media.2006.06.009
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Savadjiev, Peter;Campbell, Jennifer S. W.;Siddiqi, Kaleem
  • 通讯作者:
    Siddiqi, Kaleem
White matter fiber analysis using kernel dictionary learning and sparsity priors
  • DOI:
    10.1016/j.patcog.2019.06.002
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Kumar, Kuldeep;Siddiqi, Kaleem;Desrosiers, Christian
  • 通讯作者:
    Desrosiers, Christian

Siddiqi, Kaleem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddiqi, Kaleem', 18)}}的其他基金

Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    RGPIN-2018-06323
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    RGPIN-2018-06323
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    RGPIN-2018-06323
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    522584-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    RGPIN-2018-06323
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    522584-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Diffusion and Geometry in Modeling Biological Tissue
生物组织建模中的扩散和几何
  • 批准号:
    RGPIN-2018-06323
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Minimal Surfaces in the Heart
心脏的最小表面
  • 批准号:
    183831-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE Program in Medical Image Analysis
医学图像分析 NSERC CREATE 程序
  • 批准号:
    414043-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Training Experience
NSERC CREATE Program in Medical Image Analysis
医学图像分析 NSERC CREATE 程序
  • 批准号:
    414043-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Training Experience

相似海外基金

Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
  • 批准号:
    BB/Y512412/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Training Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346687
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350344
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
  • 批准号:
    EP/Y036727/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
  • 批准号:
    DP240100464
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Projects
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
  • 批准号:
    24K06666
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了