Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
基本信息
- 批准号:RGPIN-2017-04377
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The structures and actions of nerves and muscles are studied by analyzing the electrophysiological signals they generate. Electromyographic (EMG) signals are used to study processes affecting skeletal muscle morphology and physiology. Skeletal muscles are organized into motor units (MUs); groups of fibres activated by single motor neurons. Each MU generates motor unit potentials (MUPs), which are summations of muscle fibre potentials (MFPs) generated by active MU fibres. During muscle contraction, MUs are repetitively active. Each active MU generates a motor unit potential train (MUPT), and an EMG signal is the summation of the MUPTs of active MUs. Neuromuscular disorders and aging affect the morphology and physiology of MUs, and the MFPs, MUPs and MUPTs they generate. Currently, the diagnosis of many neuromuscular disorders relies on subjective and qualitative analysis of the MUPs and MUPTs of needle-detected EMG signals. Patient outcomes are therefore highly dependent on individual physician expertise and training, and it is very difficult to assess disease progression and provide reliable prognoses. Current studies of the neuromuscular effects of aging use statistics of composite EMG signals, which cannot provide detailed individual MU information. As such, these methods are unable to detect important neuromuscular changes.***The proposed research objectives are to develop novel methods to create a quantitative electrophysiological neuromuscular characterization. These include methods to: 1) extract relevant MUP and MUPT data from EMG signals detected using standard methods; 2) suitably represent extracted MUP and MUPT data using sets of feature values which relate to specific aspects of MU morphology and physiology and; 3) apply sets of suitably represented MUPTs, relating to a representative set of MUs sampled from a test muscle to a classifier and interpretation module to provide a quantitative neuromuscular characterization. Novel signal processing and pattern recognition methods will be developed to extract MUP and MUPT data. Novel machine learning methods will be developed to interpret the data to provide decision support. The provided characterizations will be based on novel measures of MU fibre spatial arrangements, MFP temporal dispersion and MUP stability. This will allow them to be used to support and improve clinical decisions related to the diagnosis, treatment and management of neuromuscular disorders and provide better patient outcomes. The newly available detailed individual MU information will also facilitate the study of the neuromuscular effects of aging. Students working on these objectives will obtain valuable experience in both the natural sciences (neuromuscular physiology, electrophysiology) and engineering (signal processing, machine learning) and will be well equipped for employment related to the development of biomedical devices.
通过分析神经和肌肉产生的电生理信号来研究神经和肌肉的结构和活动。肌电图(EMG)信号用于研究影响骨骼肌形态和生理的过程。骨骼肌被组织成运动单位(MU);由单个运动神经元激活的纤维群。每个MU产生运动单位电位(MUP),其是由活动MU纤维产生的肌纤维电位(MFP)的总和。在肌肉收缩期间,MU是重复活跃的。每一个活动的MU产生一个运动单位电位序列(MUPT),而EMG信号是活动MU的运动单位电位序列的总和。神经肌肉疾病和衰老影响MU的形态和生理,以及它们产生的MFP、MUP和MUPT。目前,许多神经肌肉疾病的诊断依赖于对针检测到的EMG信号的MUP和MUP T的主观和定性分析。因此,患者结局高度依赖于个体医生的专业知识和培训,并且很难评估疾病进展并提供可靠的诊断。目前的研究的神经肌肉老化的影响使用的复合肌电信号的统计,不能提供详细的个人MU信息。因此,这些方法无法检测重要的神经肌肉变化。拟议的研究目标是开发新的方法来创建一个定量的电生理神经肌肉表征。这些措施包括:2)使用与MU形态学和生理学的特定方面相关的特征值集合适当地表示所提取的MUP和MUPT数据; 3)应用适当表示的MUPT的集合,将从测试肌肉采样的代表性MU集合与分类器和解释模块相关联,以提供定量神经肌肉特征化将开发新的信号处理和模式识别方法来提取MUP和MUPT数据。将开发新的机器学习方法来解释数据,以提供决策支持。所提供的表征将基于MU纤维空间排列,MFP时间色散和MUP稳定性的新措施。这将使它们能够用于支持和改善与神经肌肉疾病的诊断、治疗和管理相关的临床决策,并提供更好的患者结局。新获得的详细的个体MU信息也将促进衰老对神经肌肉影响的研究。致力于这些目标的学生将获得自然科学(神经肌肉生理学,电生理学)和工程(信号处理,机器学习)方面的宝贵经验,并将为与生物医学设备开发相关的就业做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stashuk, Daniel其他文献
A software package for interactive motor unit potential classification using fuzzy k-NN classifier
- DOI:
10.1016/j.cmpb.2007.10.006 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Rasheed, Sarbast;Stashuk, Daniel;Kamel, Mohamed - 通讯作者:
Kamel, Mohamed
Adaptive fuzzy k-NN classifier for EMG signal decomposition
- DOI:
10.1016/j.medengphy.2005.11.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:2.2
- 作者:
Rasheed, Sarbast;Stashuk, Daniel;Kamel, Mohamed - 通讯作者:
Kamel, Mohamed
Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men.
循环睾酮和脱氢表雄酮与未经训练和高度活跃的老年男性的个体运动单位特征有关。
- DOI:
10.1007/s11357-021-00482-3 - 发表时间:
2022-06 - 期刊:
- 影响因子:5.6
- 作者:
Guo, Yuxiao;Piasecki, Jessica;Swiecicka, Agnieszka;Ireland, Alex;Phillips, Bethan E.;Atherton, Philip J.;Stashuk, Daniel;Rutter, Martin K.;McPhee, Jamie S.;Piasecki, Mathew - 通讯作者:
Piasecki, Mathew
Stashuk, Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stashuk, Daniel', 18)}}的其他基金
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
EEG integration with a novel Integrated Transcranial Magnetic Stimulation (iTMS) device
EEG 与新型集成经颅磁刺激 (iTMS) 设备集成
- 批准号:
454254-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Thalmic Labs: EMG Pattern Recognition
Thalmic Labs:肌电图模式识别
- 批准号:
445334-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
相似海外基金
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
- 批准号:
24K18602 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electrophysiological characterization and 3D-structure determination of land plant-specific calcium-permeable mechanosensitive channels
陆地植物特有的钙渗透性机械敏感通道的电生理学表征和 3D 结构测定
- 批准号:
23K05711 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Relationship between Reading Ability and Musical Skills in Adults: a Combined Behavioural and Electrophysiological Approach
调查成人阅读能力和音乐技能之间的关系:行为学和电生理学相结合的方法
- 批准号:
2892221 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Effects of early life sleep disruption on prefrontal cortex electrophysiological state and affiliation/attachment
生命早期睡眠中断对前额皮质电生理状态和归属/依恋的影响
- 批准号:
10734842 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Identifying Electrophysiological Targets for Transcranial Magnetic Stimulation in Cocaine Use Disorder
确定可卡因使用障碍中经颅磁刺激的电生理目标
- 批准号:
10723380 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Using a point-of-care electrophysiological method to study the impact of neuro-sacral function on recovery after acute spinal cord injury
使用即时电生理学方法研究神经骶功能对急性脊髓损伤后恢复的影响
- 批准号:
477997 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Operating Grants
Development of a crossover electrophysiological analysis system integrating AI and mathematical modeling
人工智能与数学建模交叉电生理分析系统开发
- 批准号:
23K15155 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
- 批准号:
2309413 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Electrophysiological study of the olfactory system in preclinical Alzheimer's disease
阿尔茨海默病临床前嗅觉系统的电生理学研究
- 批准号:
475764 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Studentship Programs
Clinical values of auditory electrophysiological assessments during hearing aids fitting in adults with dementia
老年痴呆症成人助听器验配过程中听觉电生理评估的临床价值
- 批准号:
486065 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Studentship Programs














{{item.name}}会员




