Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
基本信息
- 批准号:44330-2012
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Disorders of muscle and nerve change the structure and organization of the muscles involved. Characteristics of clinical electromyographic (EMG) signals suitably detected from affected muscles reflect the degree and type of disorder present. Physicians currently, subjectively and qualitatively, assess EMG signal characteristics to support diagnosis, treatment and management of specific disorders. This assessment is highly dependent on physician skill and experience. Furthermore, assessment of the severity of involvement and the sensitivity with which progressive changes can be tracked is limited. Quantitative electromyography (QEMG) involves the detection and analysis of EMG signals to calculate statistics for neuromuscular characterization. QEMG can improve the specificity and sensitivity of neuromuscular assessments and track longitudinal changes associated with specific treatment or management regimes. However, a method for completing the crucial step of interpreting QEMG data to produce a neuromuscular characterization is currently needed.
The current major objectives of our ongoing research program are as follows:
1. To develop and evaluate methods that can assist in the interpretation of QEMG results.
2. Introduce new quantitative statistics that more effectively reflect neuromuscular structure and physiology.
Based on clinically viable EMG signal decomposition systems that provide QEMG data that contain information regarding the structural, organizational and operational state of the muscles under study, novel statistically-based pattern discovery techniques for extracting the underlying information and facilitating the interpretation of QEMG results by creating a neuromuscular characterization will be developed and evaluated. The characterizations will be presented in linguistic terms. Their rationale will be easy to understand and their statistical basis will be able to be examined. In addition, a valid measure of the statistical confidence of a neuromuscular characterization will be provided. The developed system by facilitating the interpretation of QEMG data will greatly increase its usefulness and ultimately its clinical use.
肌肉和神经疾病改变了相关肌肉的结构和组织。 从受影响的肌肉适当地检测到的临床肌电图(EMG)信号的特征反映了存在的障碍的程度和类型。 目前,医生主观和定性地评估EMG信号特征,以支持特定疾病的诊断、治疗和管理。 该评估高度依赖于医生的技能和经验。 此外,评估参与的严重性和敏感性,可以跟踪渐进的变化是有限的。 定量肌电图(QEMG)涉及EMG信号的检测和分析,以计算神经肌肉表征的统计数据。 QEMG可以提高神经肌肉评估的特异性和敏感性,并跟踪与特定治疗或管理方案相关的纵向变化。 然而,目前需要一种方法来完成解释QEMG数据以产生神经肌肉表征的关键步骤。
我们正在进行的研究计划的当前主要目标如下:
1.开发和评估有助于解释QEMG结果的方法。
2.引入新的定量统计,更有效地反映神经肌肉结构和生理。
基于临床上可行的EMG信号分解系统,提供QEMG数据,其中包含有关研究中的肌肉的结构,组织和操作状态的信息,将开发和评估用于提取潜在信息并通过创建神经肌肉表征来促进QEMG结果解释的新的基于解剖学的模式发现技术。 这些特征将以语言学术语呈现。 它们的原理将很容易理解,并且能够检查它们的统计基础。 此外,还将提供神经肌肉表征的统计置信度的有效测量。 通过促进QEMG数据的解释,开发的系统将大大增加其实用性,并最终提高其临床应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stashuk, Daniel其他文献
A software package for interactive motor unit potential classification using fuzzy k-NN classifier
- DOI:
10.1016/j.cmpb.2007.10.006 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Rasheed, Sarbast;Stashuk, Daniel;Kamel, Mohamed - 通讯作者:
Kamel, Mohamed
Adaptive fuzzy k-NN classifier for EMG signal decomposition
- DOI:
10.1016/j.medengphy.2005.11.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:2.2
- 作者:
Rasheed, Sarbast;Stashuk, Daniel;Kamel, Mohamed - 通讯作者:
Kamel, Mohamed
Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men.
循环睾酮和脱氢表雄酮与未经训练和高度活跃的老年男性的个体运动单位特征有关。
- DOI:
10.1007/s11357-021-00482-3 - 发表时间:
2022-06 - 期刊:
- 影响因子:5.6
- 作者:
Guo, Yuxiao;Piasecki, Jessica;Swiecicka, Agnieszka;Ireland, Alex;Phillips, Bethan E.;Atherton, Philip J.;Stashuk, Daniel;Rutter, Martin K.;McPhee, Jamie S.;Piasecki, Mathew - 通讯作者:
Piasecki, Mathew
Stashuk, Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stashuk, Daniel', 18)}}的其他基金
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Electrophysiological Neuromuscular Characterization
定量电生理神经肌肉表征
- 批准号:
RGPIN-2017-04377 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
EEG integration with a novel Integrated Transcranial Magnetic Stimulation (iTMS) device
EEG 与新型集成经颅磁刺激 (iTMS) 设备集成
- 批准号:
454254-2013 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Engage Grants Program
Decision Support for Clinical Neurophysiology
临床神经生理学的决策支持
- 批准号:
44330-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Thalmic Labs: EMG Pattern Recognition
Thalmic Labs:肌电图模式识别
- 批准号:
445334-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Engage Grants Program
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Clinical Decision Support Software for diagnosing and managing eye conditions (Glaucoma) from routine Retinal Fundus Images
用于通过常规视网膜眼底图像诊断和管理眼部疾病(青光眼)的临床决策支持软件
- 批准号:
10055213 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative R&D
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2344731 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Development of a Novel Venous Thromboembolism Risk Assessment Model for Perioperative Clinical Decision Support
开发用于围手术期临床决策支持的新型静脉血栓栓塞风险评估模型
- 批准号:
10748559 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
- 批准号:
10699457 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
I-Corps: A Clinical Decision Support Tool to Manage Abdominal Aortic Aneurysm Patients
I-Corps:管理腹主动脉瘤患者的临床决策支持工具
- 批准号:
2318665 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Improving safety and quality of emergency care using machine learning-based clinical decision support at triage
在分诊时使用基于机器学习的临床决策支持提高紧急护理的安全性和质量
- 批准号:
10735138 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
GARDE: Scalable Clinical Decision Support for Individualized Cancer Risk Management
GARDE:个性化癌症风险管理的可扩展临床决策支持
- 批准号:
10741231 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:














{{item.name}}会员




