Theory and Application of Kinetic Equations

动力学方程理论与应用

基本信息

  • 批准号:
    RGPIN-2018-04331
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My proposed research program are focused on analysis, application, and numerical computation of kinetic equations. ***In the analysis and computation part, I propose to conduct research in three main subjects:***1. Well-posedness of nonlinear Boltzmann equations: Together with R. Alonso, Y. Morimoto, and T. Yang, we will investigate the well-posedness of nonlinear Boltzmann equations with non-cutoff kernels. Our main goal is to relax the smoothness and fast-decay assumptions for solutions in the current literature and look for spaces that are as large as possible where uniqueness can hold. We will also investigate regularization of solutions for non-cutoff Boltzmann equations starting from rough data. ***2. Nonlinear boundary layer kinetic equation: Boundary layer kinetic equations play a crucial role in determining the proper boundary conditions for fluid equations (such as Navier-Stokes and Euler) derived as the hydrodynamic limits of kinetic equations. Most of the current theoretical work regarding these equations in gas dynamics are restricted to the linear case. Together with Q. Li and J. Lu, we aim at rigorously justifying the existence of the solutions for nonlinear boundary layer Boltzmann equations for various parameter regions. We will also design efficient numerical methods for solving nonlinear equations and couple them with fluid equations in the interior. ***3. Motion of a solid in a gas: This research is to study the interaction of a moving solid with surrounding gases. I will study the setting where there is an external force acting on the solid and the gases are modelled by various kinetic equations. Current theoretical works are mostly restricted to free streaming gases. My goal is to study collisional gases and rigorously characterize the long-time asymptotic behaviour of the solid and compare with existing numerical results. ***Simultaneously, I propose to work on kinetic models in math biology, focusing on two major applications:***5. Aggregation behaviour: Kinetic and fluid types of equations have been widely applied in modelling aggregation behaviour of agents like birds. Together with R. Fetecau and H. Huang, we propose to study mean field limits of stochastic aggregation models. Current results in this direction are either over the whole space or with relatively regular interaction potentials. Our goal is to extend to models with singular potentials posed on domains with boundaries.***4. Chemotaxis: Chemotaxis studies the motion of bacteria under the influence of exterior environment. Together with B. Perthame and M. Tang, we will study non-classical kinetic transport equations modelling the evolution of the density of bacteria with internal states and noise. Our main goal is to understand ***these equations in different regions of the biological parameters involved. We will derive limiting equations and measurable quantities in different regions and compare them with experimental data.
我的研究方向是动力学方程的分析、应用和数值计算。***在分析计算部分,我提出了三个主要的研究课题:***1。非线性Boltzmann方程的适定性:与R. Alonso, Y. Morimoto和T. Yang一起,我们将研究具有非截止核的非线性Boltzmann方程的适定性。我们的主要目标是放宽当前文献中解决方案的平滑性和快速衰减假设,并寻找尽可能大的空间,其中可以容纳唯一性。我们还将从粗糙数据开始研究非截止玻尔兹曼方程解的正则化。* * * 2。非线性边界层动力学方程:边界层动力学方程在确定作为动力学方程水动力极限的流体方程(如Navier-Stokes和Euler)的适当边界条件方面起着至关重要的作用。目前气体动力学中关于这些方程的大部分理论工作都局限于线性情况。本文与李强、卢杰一起,对不同参数区域的非线性边界层玻尔兹曼方程解的存在性进行了严格证明。我们还将设计求解非线性方程的有效数值方法,并将其与内部流体方程耦合。* * * 3。固体在气体中的运动:这项研究是研究运动的固体与周围气体的相互作用。我将研究有外力作用于固体的情况,气体由各种动力学方程模拟。目前的理论工作大多局限于自由流动的气体。我的目标是研究碰撞气体,严格地描述固体的长期渐近行为,并与现有的数值结果进行比较。***同时,我建议研究数学生物学中的动力学模型,重点关注两个主要应用:***5。聚集行为:动力学和流体型方程已被广泛应用于模拟像鸟类这样的生物的聚集行为。我们与R. Fetecau和H. Huang共同提出研究随机聚集模型的平均场极限。这个方向上的电流结果要么是在整个空间上,要么是具有相对规则的相互作用势。我们的目标是扩展到在有边界的域上具有奇异势的模型。趋化性:趋化性研究细菌在外界环境影响下的运动。与B. Perthame和M. Tang一起,我们将研究非经典动力学输运方程,模拟细菌密度在内部状态和噪声下的演变。我们的主要目标是了解这些方程在不同区域所涉及的生物参数。我们将推导出不同区域的极限方程和可测量量,并与实验数据进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun, Weiran其他文献

Second-order diffusion limit for the phonon transport equation: asymptotics and numerics
声子输运方程的二阶扩散极限:渐近学和数值
Applications of kinetic tools to inverse transport problems
动力学工具在逆输运问题中的应用
  • DOI:
    10.1088/1361-6420/ab59b8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Li, Qin;Sun, Weiran
  • 通讯作者:
    Sun, Weiran
Propagation of chaos for the Keller-Segel equation over bounded domains
Keller–Segel 方程在有界域上的混沌传播
  • DOI:
    10.1016/j.jde.2018.08.024
  • 发表时间:
    2019-02-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fetecau, Razvan C.;Huang, Hui;Sun, Weiran
  • 通讯作者:
    Sun, Weiran

Sun, Weiran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun, Weiran', 18)}}的其他基金

Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of new kinetic theory for thermal oxidation of silicon replacing the Deal-Grove model
替代Deal-Grove模型的硅热氧化新动力学理论的发展与应用
  • 批准号:
    19686005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了