Theory and Application of Kinetic Equations

动力学方程理论与应用

基本信息

  • 批准号:
    RGPIN-2018-04331
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

My proposed research program are focused on analysis, application, and numerical computation of kinetic equations. In the analysis and computation part, I propose to conduct research in three main subjects: 1. Well-posedness of nonlinear Boltzmann equations: Together with R. Alonso, Y. Morimoto, and T. Yang, we will investigate the well-posedness of nonlinear Boltzmann equations with non-cutoff kernels. Our main goal is to relax the smoothness and fast-decay assumptions for solutions in the current literature and look for spaces that are as large as possible where uniqueness can hold. We will also investigate regularization of solutions for non-cutoff Boltzmann equations starting from rough data. 2. Nonlinear boundary layer kinetic equation: Boundary layer kinetic equations play a crucial role in determining the proper boundary conditions for fluid equations (such as Navier-Stokes and Euler) derived as the hydrodynamic limits of kinetic equations. Most of the current theoretical work regarding these equations in gas dynamics are restricted to the linear case. Together with Q. Li and J. Lu, we aim at rigorously justifying the existence of the solutions for nonlinear boundary layer Boltzmann equations for various parameter regions. We will also design efficient numerical methods for solving nonlinear equations and couple them with fluid equations in the interior. 3. Motion of a solid in a gas: This research is to study the interaction of a moving solid with surrounding gases. I will study the setting where there is an external force acting on the solid and the gases are modelled by various kinetic equations. Current theoretical works are mostly restricted to free streaming gases. My goal is to study collisional gases and rigorously characterize the long-time asymptotic behaviour of the solid and compare with existing numerical results. Simultaneously, I propose to work on kinetic models in math biology, focusing on two major applications: 5. Aggregation behaviour: Kinetic and fluid types of equations have been widely applied in modelling aggregation behaviour of agents like birds. Together with R. Fetecau and H. Huang, we propose to study mean field limits of stochastic aggregation models. Current results in this direction are either over the whole space or with relatively regular interaction potentials. Our goal is to extend to models with singular potentials posed on domains with boundaries. 4. Chemotaxis: Chemotaxis studies the motion of bacteria under the influence of exterior environment. Together with B. Perthame and M. Tang, we will study non-classical kinetic transport equations modelling the evolution of the density of bacteria with internal states and noise. Our main goal is to understand these equations in different regions of the biological parameters involved. We will derive limiting equations and measurable quantities in different regions and compare them with experimental data.
我的研究方向是动力学方程的分析、应用和数值计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun, Weiran其他文献

Second-order diffusion limit for the phonon transport equation: asymptotics and numerics
声子输运方程的二阶扩散极限:渐近学和数值
Applications of kinetic tools to inverse transport problems
动力学工具在逆输运问题中的应用
  • DOI:
    10.1088/1361-6420/ab59b8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Li, Qin;Sun, Weiran
  • 通讯作者:
    Sun, Weiran
Propagation of chaos for the Keller-Segel equation over bounded domains
Keller–Segel 方程在有界域上的混沌传播
  • DOI:
    10.1016/j.jde.2018.08.024
  • 发表时间:
    2019-02-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fetecau, Razvan C.;Huang, Hui;Sun, Weiran
  • 通讯作者:
    Sun, Weiran

Sun, Weiran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun, Weiran', 18)}}的其他基金

Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis of Moment Systems Derived from Kinetic Equations
由动力学方程导出的力矩系统的数学分析
  • 批准号:
    435842-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Application of Kinetic Equations
动力学方程理论与应用
  • 批准号:
    RGPIN-2018-04331
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical theory and application of kinetic and related models
动力学及相关模型的数学理论与应用
  • 批准号:
    7847-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of new kinetic theory for thermal oxidation of silicon replacing the Deal-Grove model
替代Deal-Grove模型的硅热氧化新动力学理论的发展与应用
  • 批准号:
    19686005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了