Multi-objective automatic data assimilation of a hydrological model based on classification of initial hydrologic states
基于初始水文状态分类的水文模型多目标自动数据同化
基本信息
- 批准号:522813-2018
- 负责人:
- 金额:$ 0.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Plus Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Power Operations division of Rio Tinto Aluminium (RTA) has the mandate to manage two large water**resources systems, namely the Lac-Saint-Jean system in Québec and the Nechako system in British-Columbia.**To manage the water resources systems efficiently and safely, multiple scenarios of inflow predictions are**produced and are fed into water resources management optimization models. The quality of the forecasted**inflows is crucial as it allows adequately mitigating flooding risks as well as maximizing hydropower**generation for a given volume of water.**Hydrologic models are used to produce inflow predictions and these are first trained on past data and then used**to produce inflow forecasts by driving the model with forecasted inputs like precipitation and temperature. The**initial states of the model are key parameters required to obtain an accurate forecast. To provide the best**possible initial states before starting the forecast simulations, an expert analyst compares the model states with**current observations and corrects these states manually if necessary. This procedure yields reliable short-term**forecasts. The skill of long-term forecasts, however, is poor due to the unclear propagation of the manual**changes through the complex system over a long horizon. This research is intended to automatize the process**of initial state updating using advanced sensitivity analysis and classification algorithms. The automatic**procedure will search for the optimal corrections to achieve both reliable short-term and long-term performance**of the forecasts based on the initial conditions of the catchment. This will help RTA to optimize their**operations using sustainable hydroelectricity.
Rio Tinto Aluminium(RTA)的电力运营部门负责管理两个大型水资源系统,即魁北克省的Lac-Saint-Jean系统和不列颠哥伦比亚省的Nechako系统。为了有效和安全地管理水资源系统,生成了多种流入预测情景,并将其输入水资源管理优化模型。预测的 ** 流入量的质量至关重要,因为它可以充分减轻洪水风险,并最大限度地提高给定水量的水力发电量。水文模型用于生成流入预测,这些模型首先在过去的数据上进行训练,然后通过使用预测输入(如降水和温度)驱动模型来生成流入预测。模型的初始状态是获得准确预测所需的关键参数。为了在开始预测模拟之前提供最佳的初始状态,专家分析师将模型状态与当前观测值进行比较,并在必要时手动校正这些状态。这一程序产生可靠的短期 ** 预测。然而,长期预测的技能很差,因为在很长一段时间内,人工 ** 变化在复杂系统中的传播不清楚。本研究的目的是自动化的过程 ** 的初始状态更新使用先进的灵敏度分析和分类算法。自动 ** 程序将根据流域的初始条件搜索最佳校正,以实现可靠的短期和长期预报性能 **。这将有助于RTA利用可持续的水电优化其 ** 运营。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tolson, Bryan其他文献
Tolson, Bryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tolson, Bryan', 18)}}的其他基金
Large-sample comparative hydrologic modelling computational laboratory
大样本比较水文模拟计算实验室
- 批准号:
RGPIN-2022-03890 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2018
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2017
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Identification, analysis and implementation of an automatic conditional data assimilation framework for hydrological forecasting in hydropower reservoir management
水电水库管理中水文预报自动条件资料同化框架的识别、分析和实现
- 批准号:
505753-2016 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Engage Grants Program
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced calibration methods for computationally expensive hydrologic simulation models
为计算成本高昂的水文模拟模型开发先进的校准方法
- 批准号:
312531-2011 - 财政年份:2015
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced calibration methods for computationally expensive hydrologic simulation models
为计算成本高昂的水文模拟模型开发先进的校准方法
- 批准号:
312531-2011 - 财政年份:2014
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
- 批准号:
2348910 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Standard Grant
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
Watsuji on subjectivity: the impact of Hegel on his thought and its pertinence for the philosophy of objective spirit
和司论主体性:黑格尔对其思想的影响及其与客观精神哲学的关联
- 批准号:
24K03370 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Objective Measurement and Analysis of Fibre Extraction
纤维提取的客观测量和分析
- 批准号:
10089054 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Collaborative R&D
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y03743X/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
- 批准号:
EP/Z000041/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y037367/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
Transformer-based Framework for Multi-objective Reinforcement Learning using Hierarchical Policies
使用分层策略的基于 Transformer 的多目标强化学习框架
- 批准号:
24K20843 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists