Proactive Failure Management Methods for Coherent Optical Networks
相干光网络的主动故障管理方法
基本信息
- 批准号:530336-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current fault management strategies are essentially reactive and consist in implementing in the network control**system algorithms for network reconfiguration which take action only after the failures. Proactive approaches**that allow forecasting equipment failures in optical networks have been explored in the last few years.**Equipment failure prediction methods using machine learning (ML) and time series in optical networks have**been proposed. Different ML techniques have been explored in the last two years to provide cognitive solutions**for failure detection in optical networks. A failure identification and localization tool based on Bayesian**inference, as well as methods for bit error rate (BER) degradation detection and failure detection in optical**networks, have been proposed recently. However, most of the research on cognitive optical networking is at a**very early stage of exploration and based on synthetic or lab performance data in the absence of field**performance data. Therefore, the applicability of these new proactive fault management strategies in real**network deployment conditions is yet to be demonstrated. The development of predictive system analysis tools**would provide network operators with an advantage in making their optical network more reliable and would**also provide an opportunity to reduce their operational expenditures through automated network control**system.**The proposed project will explore proactive fault management strategies in coherent optical networks based on**machine learning techniques. The project will leverage the research activities on cognitive optical networking**at the Network Technology Lab in the last two years. The project will consist in evaluating different ML**algorithms, with the objective to determine the most promising approaches for fault prediction. The innovative**ML methods will be evaluated according to the following metrics: prediction accuracy, computing time and**scalability. Synthetic BER data will be used for evaluating the performance of the ML-based fault predictors.
目前的故障管理策略基本上是反应性的,并且包括在网络控制系统中执行用于网络重构的算法,该算法仅在故障之后才采取行动。在过去几年中,已经探索了允许预测光网络中的设备故障的主动方法 **。提出了利用机器学习(ML)和时间序列进行光网络设备故障预测的方法。在过去的两年中,人们探索了不同的ML技术,为光网络中的故障检测提供认知解决方案。最近提出了一种基于贝叶斯推理的故障识别和定位工具,以及用于光 ** 网络中的误码率(BER)退化检测和故障检测的方法。然而,大多数关于认知光网络的研究都处于探索的早期阶段,并且在缺乏现场性能数据的情况下基于合成或实验室性能数据。因此,这些新的主动故障管理策略在真实的 ** 网络部署条件下的适用性还有待证明。预测性系统分析工具的开发 ** 将为网络运营商提供优势,使其光网络更加可靠,** 还将提供机会,通过自动化网络控制 ** 系统减少运营支出。拟议的项目将探索基于 ** 机器学习技术的相干光网络中的主动故障管理策略。该项目将利用网络技术实验室在过去两年中对认知光网络 ** 的研究活动。该项目将包括评估不同的ML** 算法,目的是确定最有前途的故障预测方法。创新的ML方法将根据以下指标进行评估:预测准确性,计算时间和 ** 可扩展性。合成BER数据将用于评估基于ML的故障预测器的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tremblay, Christine其他文献
Tremblay, Christine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tremblay, Christine', 18)}}的其他基金
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
- 批准号:
RGPIN-2019-03972 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
- 批准号:
RGPIN-2019-03972 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
- 批准号:
RGPIN-2019-03972 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
- 批准号:
RGPIN-2019-03972 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Performance Monitoring of Coherent Optical Networks
相干光网络的性能监控
- 批准号:
488332-2015 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
- 批准号:
RGPIN-2014-05898 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Performance Monitoring of Coherent Optical Networks
相干光网络的性能监控
- 批准号:
488332-2015 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Microstructured Optical Fiber Technologies for Advanced Optical Network Applications
用于先进光网络应用的微结构光纤技术
- 批准号:
517417-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
- 批准号:
RGPIN-2014-05898 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
- 批准号:
RGPIN-2014-05898 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Implementation Evaluation of PACT Pharmacy Management of Heart Failure in VISN 21
VISN 21 心力衰竭 PACT 药房管理实施评价
- 批准号:
10753388 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Bedside right-heart catheterization for early diagnosis and more effective management of patients with heart failure and primary pulmonary hypertension
床边右心导管检查可对心力衰竭和原发性肺动脉高压患者进行早期诊断和更有效的治疗
- 批准号:
10696663 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Leveraging Heath Information Technology to Improve Post-Discharge Management for Patients with Heart Failure
利用健康信息技术改善心力衰竭患者的出院后管理
- 批准号:
10592045 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Physical Frailty and Symptom Monitoring and Management Behaviors in Heart Failure (PRISM-HF)
心力衰竭的身体虚弱和症状监测和管理行为 (PRISM-HF)
- 批准号:
10740609 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Development of distributed wireless implantable sensors for the management of heart failure (HF)
开发用于治疗心力衰竭(HF)的分布式无线植入传感器
- 批准号:
RGPIN-2021-03151 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Improving Psychological Outcomes for Acute Respiratory Failure Survivors using a Self-Management Intervention
使用自我管理干预措施改善急性呼吸衰竭幸存者的心理结果
- 批准号:
10557841 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Polypill strategy for the evidence-based management of heart failure with reduced ejection fraction in an underserved patient population
在服务不足的患者群体中对射血分数降低的心力衰竭进行循证管理的多药丸策略
- 批准号:
10444784 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
A Randomized Clinical Trial to Evaluate Solutions for the Management of Virologic Failure for Individuals on TLD in Sub-Saharan Africa
评估撒哈拉以南非洲 TLD 个体病毒学失败管理解决方案的随机临床试验
- 批准号:
10654866 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Targeting cognitive function and interoceptive awareness to improve self-management in patients with co-morbid heart failure and cognitive impairment.
针对认知功能和内感受意识,改善合并心力衰竭和认知障碍患者的自我管理。
- 批准号:
10616751 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Polypill strategy for the evidence-based management of heart failure with reduced ejection fraction in an underserved patient population
在服务不足的患者群体中对射血分数降低的心力衰竭进行循证管理的多药丸策略
- 批准号:
10622331 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: