Smart Optical Networks Enabled by Machine Learning

机器学习支持的智能光网络

基本信息

  • 批准号:
    RGPIN-2019-03972
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The continuous traffic increase has led to wavelength division multiplexing (WDM) transmission systems with ever-increasing data rates, capacity and flexibility. Video and cloud applications, as well as future 5G and Internet of Things (IoT), call for even higher traffic volumes and dynamicity in optical networks. This makes the potential impact of performance degradation and failure at the link and network levels more severe and the need for flexible and autonomous network management more important than ever. Machine learning (ML) has been researched in the last ten years as a way to bring Artificial intelligence (AI) in wireless networks for optimizing spectrum and network resources, but its application in optical networks is still in its infancy. The availability of flexible transponders with monitoring capabilities makes it possible to leverage the potential of ML to design and manage increasingly heterogeneous, dynamic and complex networks in a software-defined network (SDN) context. As we are entering into the era of knowledge-defined networking (KDN), the proposed research program aims at investigating cognitive concepts for improving the flexibility and robustness of optical networks through adaptive and learning mechanisms. The program will explore ML-based methods for QoT estimation and optical signal to noise ratio (OSNR) prediction in the optical layer, as well as for anomaly detection and proactive fault management at the network level. Supervised and unsupervised ML, as well as reinforcement learning (RL) techniques, will be investigated using both synthetic and field data. The long-term objective of the proposed research program is to perform a testbed demonstration of a KDN showing the benefits of ML for performance prediction and the advantages of proactive over conventional reactive approaches for lightpath provisioning and fault management. The originality and scientific impact of the proposed research program lies in the huge potential of ML to be exploited in the field of optical networking, which opens extremely rich opportunities for innovation, as well as on the availability of field data for training the ML models and making them more suitable for real-world applications. The results of this research program will enable the development of preventive strategies for making high capacity optical networks more reliable and easier to manage. Some additional innovations include: new ML models for QoT estimation; new predictive methods for performance evolution and anomaly detection; new proactive schemes for simplified and automated network operation and higher network reliability. The potential for training highly qualified personnel (HQP) involving multidisciplinary research on advanced networking and ML is a major asset of the research program. Three Ph.D. students, four Master's students and several undergraduate students will be involved in the research program to be completed in an expected time frame of five years.
业务量的持续增长导致波分复用(WDM)传输系统具有不断增长的数据速率、容量和灵活性。视频和云应用以及未来的5G和物联网(IoT)要求光网络具有更高的流量和动态性。这使得链路和网络级别的性能下降和故障的潜在影响更加严重,对灵活和自主网络管理的需求比以往任何时候都更加重要。机器学习(ML)在过去十年中一直被研究作为将人工智能(AI)引入无线网络以优化频谱和网络资源的一种方式,但其在光网络中的应用仍处于起步阶段。具有监控功能的灵活转发器的可用性使得可以利用ML的潜力来设计和管理软件定义网络(SDN)环境中日益异构,动态和复杂的网络。 随着我们进入知识定义网络(KDN)时代,拟议的研究计划旨在调查认知概念,通过自适应和学习机制提高光网络的灵活性和鲁棒性。该计划将探索基于ML的方法,用于光学层的QoT估计和光信噪比(OSNR)预测,以及网络级的异常检测和主动故障管理。监督和无监督ML以及强化学习(RL)技术将使用合成和现场数据进行研究。拟议研究计划的长期目标是进行KDN的测试台演示,展示ML在性能预测方面的优势,以及主动式方法相对于传统反应式方法在光路配置和故障管理方面的优势。 拟议研究计划的原创性和科学影响在于ML在光网络领域的巨大潜力,这为创新提供了极其丰富的机会,以及现场数据的可用性,用于训练ML模型并使其更适合现实世界的应用。这项研究计划的结果将有助于制定预防策略,使高容量光网络更可靠,更易于管理。一些其他创新包括:用于QoT估计的新ML模型;用于性能演进和异常检测的新预测方法;用于简化和自动化网络操作以及更高网络可靠性的新主动方案。培养高素质人才(HQP)的潜力涉及先进网络和ML的多学科研究是研究计划的主要资产。三个博士学生,四名硕士生和几名本科生将参与研究计划,将在五年的预期时间内完成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tremblay, Christine其他文献

Tremblay, Christine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tremblay, Christine', 18)}}的其他基金

Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
  • 批准号:
    RGPIN-2019-03972
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
  • 批准号:
    RGPIN-2019-03972
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Optical Networks Enabled by Machine Learning
机器学习支持的智能光网络
  • 批准号:
    RGPIN-2019-03972
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Performance Monitoring of Coherent Optical Networks
相干光网络的性能监控
  • 批准号:
    488332-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
  • 批准号:
    RGPIN-2014-05898
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Proactive Failure Management Methods for Coherent Optical Networks
相干光网络的主动故障管理方法
  • 批准号:
    530336-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Performance Monitoring of Coherent Optical Networks
相干光网络的性能监控
  • 批准号:
    488332-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Microstructured Optical Fiber Technologies for Advanced Optical Network Applications
用于先进光网络应用的微结构光纤技术
  • 批准号:
    517417-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
  • 批准号:
    RGPIN-2014-05898
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Cognitive optical networks enabled by coherent technologies and filterless concepts
由相干技术和无滤波器概念支持的认知光网络
  • 批准号:
    RGPIN-2014-05898
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Optical and wireless sensors networks for 6G scenarios - -OWIN6G
6G场景的光学和无线传感器网络 - -OWIN6G
  • 批准号:
    EP/Y034538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
  • 批准号:
    2347514
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Optical 6G Cell Free Networks
光 6G 无蜂窝网络
  • 批准号:
    10105708
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    EU-Funded
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative R&D
Reconfigurable Diffractive Optical Neural Networks with Phase Change Material based Photonic Device
具有基于相变材料的光子器件的可重构衍射光学神经网络
  • 批准号:
    2316627
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Reaching deeper into neuronal networks using optical physics
利用光学物理学深入研究神经元网络
  • 批准号:
    DE230100972
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Early Career Researcher Award
FASTNET - Revolutionary hollow core low-latency fibres and cables for ultrafast next-generation optical networks
FASTNET - 用于超快下一代光网络的革命性空心低延迟光纤和电缆
  • 批准号:
    EP/X025276/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
High-speed optical fibre switches for quantum photonic networks.
用于量子光子网络的高速光纤交换机。
  • 批准号:
    2888749
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Studentship
Broadband optical modulator for multi-band radio over fiber networks
用于光纤网络多频段无线电的宽带光调制器
  • 批准号:
    23K13340
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum Optical Neural Networks for Quench Prevention
用于预防猝灭的量子光神经网络
  • 批准号:
    10073463
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了