Optimizing the treatment of drinking water using reinforcement learning
使用强化学习优化饮用水处理
基本信息
- 批准号:520966-2017
- 负责人:
- 金额:$ 13.61万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to develop machine learning techniques for the automation of membrane ultra- filtration in drinking water treatment. We will investigate the feasibility and efficacy of these approaches on a pilot-scale experimental platform, towards eventual full-scale deployment.****Currently, this complex process is managed by human operators. Thus, the cost-effectiveness of water- treatment process control in modern plants relies heavily on operator skill, judgment and intuition, which can only be gained over many seasons of experience. As a result, the effectiveness of water treatment will be limited by the availability of experienced human operators, the bounded frequency with which human operators are able to adjust process parameters due to their other job requirements, and the limited amount of information available to them on which to base their decisions. As the complexity of operating large plants increases, recruiting and training human operators is getting ever more challenging, especially for small communities. ****We will investigate the use of reinforcement learning for automating parts of the water treatment process. These approaches uses a constant stream of sensor information, including information about water quality, flow, demand and electricity prices, to minimize costs without impacting water quality or availability. For example, these learning algorithms could determine how to optimize operation of pumps to reduce electricity costs. As another example, cleaning the filters is a significant cost; these algorithms could provide more fine-grained control, that makes decisions over seconds or minutes rather than hours or days, reducing cleaning costs and increasing the life-span of the filters. With even small optimizations, this project has the potential to produce significant savings for water treatment.**
该项目的目标是为饮用水处理中膜超过滤的自动化开发机器学习技术。我们将在试点规模的实验平台上研究这些方法的可行性和有效性,最终实现全面部署。****目前,这个复杂的过程是由人工操作员管理的。因此,现代工厂水处理过程控制的成本效益在很大程度上依赖于操作人员的技能、判断力和直觉,而这些只能通过多年的经验来获得。因此,水处理的有效性将受到以下因素的限制:经验丰富的操作人员的可用性;由于其他工作要求,操作人员能够调整工艺参数的频率有限;以及可供他们做出决定的可用信息有限。随着运营大型工厂的复杂性增加,招聘和培训人工操作员变得越来越具有挑战性,尤其是对小型社区而言。****我们将研究使用强化学习来自动化部分水处理过程。这些方法使用恒定的传感器信息流,包括有关水质、流量、需求和电价的信息,在不影响水质或可用性的情况下将成本降至最低。例如,这些学习算法可以确定如何优化泵的运行以降低电力成本。另一个例子是,清洁过滤器是一项巨大的成本;这些算法可以提供更细粒度的控制,可以在几秒钟或几分钟内做出决定,而不是几小时或几天,从而降低清洁成本并延长过滤器的使用寿命。即使是很小的优化,该项目也有可能显著节省水处理费用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
White, Martha其他文献
White, Martha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('White, Martha', 18)}}的其他基金
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
RGPIN-2018-05721 - 财政年份:2022
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
RGPIN-2018-05721 - 财政年份:2021
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing the treatment of drinking water using reinforcement learning
使用强化学习优化饮用水处理
- 批准号:
520966-2017 - 财政年份:2020
- 资助金额:
$ 13.61万 - 项目类别:
Collaborative Research and Development Grants
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
RGPIN-2018-05721 - 财政年份:2020
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
522586-2018 - 财政年份:2019
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
RGPIN-2018-05721 - 财政年份:2019
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing the treatment of drinking water using reinforcement learning
使用强化学习优化饮用水处理
- 批准号:
520966-2017 - 财政年份:2019
- 资助金额:
$ 13.61万 - 项目类别:
Collaborative Research and Development Grants
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
RGPIN-2018-05721 - 财政年份:2018
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
DGECR-2018-00161 - 财政年份:2018
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Launch Supplement
Sparse representations for reinforcement learning
强化学习的稀疏表示
- 批准号:
522586-2018 - 财政年份:2018
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
- 批准号:82371251
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
- 批准号:82372120
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MICA基因及其抗体在肾移植排斥反应中的作用机制与干预策略研究
- 批准号:30872530
- 批准年份:2008
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing a Digital AEP Risk Intervention with Native Women and Communities
与原住民妇女和社区一起优化数字 AEP 风险干预
- 批准号:
10572200 - 财政年份:2023
- 资助金额:
$ 13.61万 - 项目类别:
Optimizing Biofilm Processes for Drinking Water Treatment
优化饮用水处理的生物膜工艺
- 批准号:
RGPIN-2018-03780 - 财政年份:2022
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2022
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Drinking Water Treatment Response after Wildfire
优化野火后的饮用水处理响应
- 批准号:
567071-2021 - 财政年份:2021
- 资助金额:
$ 13.61万 - 项目类别:
University Undergraduate Student Research Awards
Optimizing Biofilm Processes for Drinking Water Treatment
优化饮用水处理的生物膜工艺
- 批准号:
RGPIN-2018-03780 - 财政年份:2021
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2021
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Biofilm Processes for Drinking Water Treatment
优化饮用水处理的生物膜工艺
- 批准号:
RGPIN-2018-03780 - 财政年份:2020
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing the treatment of drinking water using reinforcement learning
使用强化学习优化饮用水处理
- 批准号:
520966-2017 - 财政年份:2020
- 资助金额:
$ 13.61万 - 项目类别:
Collaborative Research and Development Grants
Development of Spectroscopic Methods for Optimizing Drinking Water Treatment Processes
开发优化饮用水处理过程的光谱方法
- 批准号:
RGPIN-2019-05449 - 财政年份:2020
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Biofilm Processes for Drinking Water Treatment
优化饮用水处理的生物膜工艺
- 批准号:
RGPIN-2018-03780 - 财政年份:2019
- 资助金额:
$ 13.61万 - 项目类别:
Discovery Grants Program - Individual