Controllability of Complex Networks
复杂网络的可控性
基本信息
- 批准号:RGPIN-2017-06413
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A measure of our understanding of naturally occurring or artificial systems can be observed in our ability to control them. One abstract representation of such systems that is increasingly been used for analysis is that of a complex network. Complex networks are found in many domains (e.g., Biology and the Web) and the control of these networks is a research topic that has started to draw increasing research attention. While engineering has provided tools for developing control systems which can force a system to follow a particular state trajectory, no framework exists for control of complex, possibly self-organizing, networks. The main objective of this proposal is to identify conditions under which control is possible in complex networks and develop control solutions for exemplar problems within the domain of network controllability. The novelty of this research is in its exploration of the solution to the interacting problems of deciding which nodes in the network to control and which signals to inject into the selected network nodes in order to achieve a particular time dependent objective.******Controllability of complex networks [1] led to our formalization of the Network Control Problem (NCP) [2]. Early indications are that controllability is possible in a wide range of scenarios. Simple neural network controllers have been developed; we propose that deep learning and reinforcement learning should be evaluated on exemplar NCP instances drawn from the taxonomy outlined in [2]. Of particular interest is distribution-based control (DbC), a class of network control problem that attempts to maintain the distribution of network node states close to a target distribution; e.g., preventing social network opinions from becoming too extreme. Analytically, we propose the development of techniques similar to landscape analysis to assess DbC difficulty. By examining node influence and various network motifs such as identifiable communities we expect that a deeper understanding of structures of importance will be forthcoming. Finally, we see DbC as an important approach to catastrophe or bubble avoidance. Here, a market place is backed by a social network of agents whose actions are interdependent. Our objective would be to examine the effectiveness of DbC as a market place control mechanism.******To summarize, this proposal will make contributions in the area of complex network controllability; most notably in the area of distribution-based control. The principal investigator has already contributed to the NCP research community [2] and sees great potential in the application of the proposed research to market control.******[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.***[2] A. Runka and T. White, “Towards Intelligent Control of Influence Diffusion in Social Networks,” Social Network Analysis and Mining, vol. 5, no. 1, 2015.
我们对自然发生或人工系统的理解程度可以从我们控制它们的能力中观察到。越来越多地用于分析的这种系统的一种抽象表示是复杂网络。复杂网络存在于许多领域(例如,生物学和网络)和控制这些网络是一个研究课题,已经开始引起越来越多的研究关注。虽然工程学提供了开发控制系统的工具,可以迫使系统遵循特定的状态轨迹,但不存在控制复杂的、可能自组织的网络的框架。这个建议的主要目标是确定条件下,控制是可能的,在复杂的网络和开发控制解决方案的范例问题的域内的网络可控性。这项研究的新奇在于它探索了决定网络中哪些节点要控制以及哪些信号要注入到选定的网络节点中以实现特定的时间相关目标的相互作用问题的解决方案。复杂网络的可控性[1]导致了我们对网络控制问题(NCP)的形式化[2]。早期的迹象表明,可控性是可能的,在广泛的情况。简单的神经网络控制器已经开发出来;我们建议深度学习和强化学习应该在从[2]中概述的分类中提取的示例NCP实例上进行评估。特别令人感兴趣的是基于分布的控制(DbC),这是一类试图保持网络节点状态的分布接近目标分布的网络控制问题;例如,防止社交网络上的观点变得过于极端。在分析上,我们提出了类似于景观分析技术的发展,以评估DbC的难度。通过研究节点的影响力和各种网络图案,如可识别的社区,我们预计,更深入地了解结构的重要性将即将到来。最后,我们认为DbC是避免灾难或泡沫的重要方法。在这里,一个市场是由一个社会网络的代理人的行动是相互依赖的。我们的目的是研究DBC作为市场监管机制的有效性。*总而言之,这个建议将在复杂网络可控性领域做出贡献;最值得注意的是在基于分布的控制领域。首席研究员已经为NCP研究社区做出了贡献[2],并看到了将拟议研究应用于市场控制的巨大潜力。[1]Y.-- Y.刘杰- J. Slotine和A.- L. Barabási,“Controllability of complex networks,”Nature,vol. 473,no. 7346,pp. 167-173,2011年。[2]A. Runka和T.白色,“走向智能控制的影响力扩散在社交网络,”社会网络分析和挖掘,第5卷,第1期,2015年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
White, Tony其他文献
Extracurricular activity participation and educational outcomes among older youth transitioning from foster care
- DOI:
10.1016/j.childyouth.2017.11.010 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:3.3
- 作者:
White, Tony;Scott, Lionel D., Jr.;Munson, Michelle R. - 通讯作者:
Munson, Michelle R.
Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study.
- DOI:
10.1016/j.heliyon.2023.e16709 - 发表时间:
2023-06 - 期刊:
- 影响因子:4
- 作者:
Thyer, Sascha;White, Tony - 通讯作者:
White, Tony
Distributed and adaptive traffic signal control within a realistic traffic simulation
- DOI:
10.1016/j.engappai.2012.04.008 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:8
- 作者:
McKenney, Dave;White, Tony - 通讯作者:
White, Tony
Macroscopic effects of microscopic forces between agents in crowd models
- DOI:
10.1016/j.physa.2006.06.023 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:3.3
- 作者:
Henein, Colin M.;White, Tony - 通讯作者:
White, Tony
White, Tony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('White, Tony', 18)}}的其他基金
Controllability of Complex Networks
复杂网络的可控性
- 批准号:
RGPIN-2017-06413 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Controllability of Complex Networks
复杂网络的可控性
- 批准号:
RGPIN-2017-06413 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Controllability of Complex Networks
复杂网络的可控性
- 批准号:
RGPIN-2017-06413 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Controllability of Complex Networks
复杂网络的可控性
- 批准号:
RGPIN-2017-06413 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Controllability of Complex Networks
复杂网络的可控性
- 批准号:
RGPIN-2017-06413 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322900 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Learning the meso-scale organization of complex networks
学习复杂网络的中尺度组织
- 批准号:
DP240100872 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
- 批准号:
DP240100963 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Projects
CAREER: Scalable Software Infrastructure for Analyzing Complex Networks
职业:用于分析复杂网络的可扩展软件基础设施
- 批准号:
2339607 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322899 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant














{{item.name}}会员




