Smart scaffolds for guided tissue and organ assembly

用于引导组织和器官组装的智能支架

基本信息

  • 批准号:
    RGPIN-2018-05500
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Reproducing the complexity of human organs is daunting and demands new tissue assembly strategy that does not simply view a scaffold as a static skeleton that provides structural support, but a dynamic machine that guides tissue assembly over time. The objective of this Discovery research is to develop smart scaffolds that can structurally transform and automatically assemble to guide dynamic tissue growth on multiple lengths and timescales. Specific research projects will focus on two main themes, each target a particular challenge in biofabrication. Yet the two approaches complement each other and can be integrated.******Foldable vascular scaffolds. Tissue vascularization is the most significant obstacle in tissue engineering and has received tremendous attention in biofabrication. We recently developed a photolithographic 3D stamping technique to create a polymer scaffold, termed AngioChip, with a generic and permeable vascular network made from an elastic biodegradable polymer. Despite the high potential of this approach, we have only fabricated scaffolds up to 2 mm in thickness. To circumvent the need to tediously print or microfabricate complex structures in 3D, we aim to develop a foldable AngioChip vessel that can be folded and re-shaped from a 2D pattern into an intricate 3D vascular structure. We will establish basic design rules that guide the folding of the AngioChip vessel based on both material mechanical properties as well as physical constraints of the bioreactor. ******Magnetic micro-scaffolds that self-assemble. Many organs (heart, liver, etc.) are made from repeating functional tissue units. Recognizing this characteristic, we aim to explore new approaches that automatically assemble micro-tissue modules in vitro with minimal intervention. Specifically, we will incorporate nanoscale magnetic particles within microscale scaffolds to control both microscopic cell alignment and macroscopic tissue orientation during assembly. This strategy will guide dynamic tissue growth over multiple lengths and timescales. To validate this approach, both cardiac cells and liver cells will be used as these two organs exhibit distinct tissue architectures. ******The first project will enable us to build large-scale vascular networks while the second project will allow us to control the architecture of parenchymal tissues. When integrated together, these smart scaffolds will establish unprecedented control over the high-level organization of complex solid tissues. Successful development of transplantable tissue substitute will fundamentally change the way we treat disease and repair damaged tissues. This discovery program is designed to overcome the fundamental challenges in biofabrication and will have a broad impact on the medical treatment of a wide range of organ systems. Our interdisciplinary research program will also benefit HQP training in emerging areas of biotechnology.
复制人体器官的复杂性是令人生畏的,需要新的组织组装策略,不能简单地将支架视为提供结构支撑的静态骨架,而是随着时间的推移引导组织组装的动态机器。这项发现研究的目标是开发智能支架,可以在结构上转换和自动组装,以指导多个长度和时间尺度上的动态组织生长。具体的研究项目将侧重于两个主题,每个主题都针对生物制造业的一个特定挑战。然而,这两种方法是相辅相成的,可以结合起来。可折叠血管支架。组织血管化是组织工程的最大障碍,也是生物制品领域的研究热点。我们最近开发了一种3D打印技术来创建一种聚合物支架,称为AngioChip,具有由弹性可生物降解聚合物制成的通用和可渗透的血管网络。尽管这种方法具有很高的潜力,但我们只制造了厚度达2 mm的支架。为了避免在3D中繁琐地打印或微制造复杂结构的需要,我们的目标是开发一种可折叠的血管芯片血管,该血管可以从2D模式折叠和重新成形为复杂的3D血管结构。我们将建立基本的设计规则,根据材料的机械性能以及生物反应器的物理约束来指导AngioChip血管的折叠。** 自我组装的磁性微支架。许多器官(心脏、肝脏等)是由重复的功能组织单元组成的。认识到这一特点,我们的目标是探索新的方法,自动组装微组织模块在体外以最小的干预。具体来说,我们将把纳米级的磁性颗粒在微米级的支架,以控制组装过程中微观细胞的排列和宏观组织的方向。该策略将在多个长度和时间尺度上指导动态组织生长。为了验证这种方法,将使用心脏细胞和肝细胞,因为这两种器官表现出不同的组织结构。** 第一个项目将使我们能够建立大规模的血管网络,而第二个项目将使我们能够控制实质组织的结构。当整合在一起时,这些智能支架将对复杂实体组织的高层次组织建立前所未有的控制。可移植组织替代物的成功开发将从根本上改变我们治疗疾病和修复受损组织的方式。这项发现计划旨在克服生物制造业的根本挑战,并将对广泛的器官系统的医疗产生广泛的影响。我们的跨学科研究计划也将有利于生物技术新兴领域的HQP培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhang, Boyang其他文献

Generation of tissue constructs for cardiovascular regenerative medicine: from cell procurement to scaffold design.
  • DOI:
    10.1016/j.biotechadv.2012.08.006
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Tandon, Vishal;Zhang, Boyang;Radisic, Milica;Murthy, Shashi K.
  • 通讯作者:
    Murthy, Shashi K.
Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates
  • DOI:
    10.1039/d1lc01141c
  • 发表时间:
    2022-03-31
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Rajasekar, Shravanthi;Lin, Dawn S. Y.;Zhang, Boyang
  • 通讯作者:
    Zhang, Boyang
A standalone perfusion platform for drug testing and target validation in micro-vessel networks
  • DOI:
    10.1063/1.4818837
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhang, Boyang;Peticone, Carlotta;Radisic, Milica
  • 通讯作者:
    Radisic, Milica
Research on roof damage mechanism and control technology of gob-side entry retaining under close distance gob
  • DOI:
    10.1016/j.engfailanal.2022.106331
  • 发表时间:
    2022-04-22
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Liu, Hongyang;Zhang, Boyang;Chen, Deyou
  • 通讯作者:
    Chen, Deyou
Deep-LUMEN assay - human lung epithelial spheroid classification from brightfield images using deep learning
  • DOI:
    10.1039/d0lc01010c
  • 发表时间:
    2020-12-21
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Abdul, Lyan;Rajasekar, Shravanthi;Zhang, Boyang
  • 通讯作者:
    Zhang, Boyang

Zhang, Boyang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhang, Boyang', 18)}}的其他基金

Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
IFlowPlate - a universal platform for vascularizing organoids
IFlowPlate - 血管化类器官的通用平台
  • 批准号:
    566853-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Idea to Innovation
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
IFlowPlate - A universal platform for vascularizing organoids
IFlowPlate - 血管化类器官的通用平台
  • 批准号:
    556938-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Idea to Innovation
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Light-sheet microscopy for 3D bioimaging of engineered tissues and microphysiological systems
用于工程组织和微生理系统 3D 生物成像的光片显微镜
  • 批准号:
    RTI-2020-00463
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Tools and Instruments
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    DGECR-2018-00180
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Launch Supplement
Automated manufacturing of biodegradable scaffolds with low-cost 3D printers
使用低成本 3D 打印机自动化制造可生物降解支架
  • 批准号:
    534085-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Engage Grants Program

相似国自然基金

丝素/硫酸软骨素电纺纳米纤维促进椎间盘纤维环修复的作用及机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
  • 批准号:
    10464154
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
Biodegradable Radiopaque Polymeric Scaffolds Loaded with Mesenchymal Stem Cells for Image-Guided Arteriovenous Fistula Maturation and Long-Term Patency
装载有间充质干细胞的可生物降解的不透射线聚合物支架,用于图像引导动静脉瘘的成熟和长期通畅
  • 批准号:
    10606532
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    RGPIN-2018-05500
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Smart scaffolds for guided tissue and organ assembly
用于引导组织和器官组装的智能支架
  • 批准号:
    DGECR-2018-00180
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Launch Supplement
Three-Dimensional Image-Guided Development and Optimization of Molecular Regulating Bone Regenerative Scaffolds
三维图像引导分子调控骨再生支架的开发与优化
  • 批准号:
    8887845
  • 财政年份:
    2015
  • 资助金额:
    $ 2.77万
  • 项目类别:
Three-Dimensional Image-Guided Development and Optimization of Molecular Regulating Bone Regenerative Scaffolds
三维图像引导分子调控骨再生支架的开发与优化
  • 批准号:
    9063060
  • 财政年份:
    2015
  • 资助金额:
    $ 2.77万
  • 项目类别:
Combination of Nanofiber Scaffolds with Gradations in Fiber Organization and Mine
纳米纤维支架与纤维组织和矿山分级的结合
  • 批准号:
    8433133
  • 财政年份:
    2013
  • 资助金额:
    $ 2.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了