Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
基本信息
- 批准号:RGPIN-2016-03876
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I will continue to explore a few exciting problems about networks, which I started to investigate with my previous NSERC Discovery Accelerator Supplement grant. ******First, I will work on network estimation in protein molecules. A protein molecule is made up of a sequence of amino acid residues. With a student and a colleague, I have started to study various computational problems about characterizing the 3D structures of protein molecules, one of which is the quantification of direct-coupling strengths between any two residues. This type of analysis often results in a residue-residue network, in which each node corresponds to a residue, and an edge is drawn between two nodes if their direct-coupling strength is high. This is important for the study of allostery, the process by which conformational changes at one residue site affect the conformation of another. In dealing with this problem, we have pioneered a new analytic paradigm, which will allow us to do many interesting things in statistics. ******Next, I will work on network modeling of transactional data. Network data analysis is an emerging area of statistics. Often, each node in a network can belong to one of many different communities. Researchers have used a so-called stochastic block model (SBM) to detect these communities. Early works often do not account for time and treat the network as if it were static. Recently, researchers have started to consider network dynamics over time, but they often treat the time variable in a discrete manner. With a student and a collaborator, I have been studying a continuous-time extension of the SBM, which can be used to model transactional data, e.g., messages sent over a period of time among many individuals, but I would like to further extend our model to incorporate spatial information. The resulting spatial-temporal SBM can be used to study any collection of entities that communicate with each other while travelling over space and time; it can be very useful for many branches of science.******Finally, I will apply ideas from network analysis to ensemble learning. As far as I am aware, Zhu & Chipman (2006, Technometrics 48:491-502) were the first ones to use the ensemble approach for variable selection (as opposed to prediction). Since then, I have continued to work on this problem and further crystallized the notion of variable-selection ensembles, but an open question is what constitutes a good generating mechanism. Interestingly, a student and I have discovered a new mechanism based on network analysis. So far, this new mechanism has shown outstanding performance in almost all the simulation settings we have previously considered. I am intrigued by this new discovery, and want to dig much deeper into it.******Trainees participating in this research program will be able to cultivate computational skills that are much needed in today's economy, and acquire a taste of some very challenging problems in science and engineering.
我将继续探索一些有关网络的令人兴奋的问题,我是从之前的NSERC发现加速器补充拨款开始调查这些问题的。*首先,我将研究蛋白质分子中的网络估计。蛋白质分子是由一系列氨基酸残基组成的。与一位学生和一位同事一起,我开始研究有关表征蛋白质分子3D结构的各种计算问题,其中之一是任意两个残基之间直接耦合强度的量化。这种类型的分析通常导致残基-残基网络,其中每个节点对应于一个残基,如果两个节点的直接耦合强度高,则在两个节点之间画一条边。这对于变构的研究很重要,变构是指一个残基的构象变化影响另一个残基的构象的过程。在处理这个问题时,我们开创了一种新的分析范式,这将使我们能够在统计学中做许多有趣的事情。*接下来,我将研究事务数据的网络建模。网络数据分析是一个新兴的统计学领域。通常,网络中的每个节点可以属于许多不同社区中的一个。研究人员使用所谓的随机区块模型(SBM)来检测这些社区。早期的作品往往不考虑时间,将网络视为静态的。最近,研究人员开始考虑随时间变化的网络动态,但他们往往以离散的方式来处理时间变量。与一名学生和一名合作者一起,我一直在研究SBM的连续时间扩展,它可用于对事务数据进行建模,例如,在许多个人之间在一段时间内发送的消息,但我想进一步扩展我们的模型,以纳入空间信息。由此产生的时空SBM可以用来研究在时空旅行中相互通信的任何实体的集合;它对许多科学分支非常有用。最后,我将把网络分析的想法应用到整体学习中。据我所知,朱和奇普曼(2006,Technometrics 48:491-502)是第一个使用集合方法进行变量选择(而不是预测)的人。从那时起,我一直在研究这个问题,并进一步明确了变量选择集合的概念,但一个悬而未决的问题是,什么构成了一个好的生成机制。有趣的是,我和一个学生发现了一种基于网络分析的新机制。到目前为止,这种新机制在我们之前考虑的几乎所有模拟设置中都表现出了出色的性能。我对这一新发现很感兴趣,并想更深入地挖掘它。参加这个研究项目的学员将能够培养当今经济中非常需要的计算技能,并体验一些非常具有挑战性的科学和工程问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhu, Mu其他文献
A factor analysis model for functional genomics
- DOI:
10.1186/1471-2105-7-216 - 发表时间:
2006-04-21 - 期刊:
- 影响因子:3
- 作者:
Kustra, Rafal;Shioda, Romy;Zhu, Mu - 通讯作者:
Zhu, Mu
Using machine learning algorithms to guide rehabilitation planning for home care clients
- DOI:
10.1186/1472-6947-7-41 - 发表时间:
2007-12-20 - 期刊:
- 影响因子:3.5
- 作者:
Zhu, Mu;Zhang, Zhanyang;Stolee, Paul - 通讯作者:
Stolee, Paul
Stochastic Stepwise Ensembles for Variable Selection
- DOI:
10.1080/10618600.2012.679223 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:2.4
- 作者:
Xin, Lu;Zhu, Mu - 通讯作者:
Zhu, Mu
Topology optimization considering multi-axis machining constraints using projection methods
- DOI:
10.1016/j.cma.2021.114464 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:7.2
- 作者:
Lee, Hak Yong;Zhu, Mu;Guest, James K. - 通讯作者:
Guest, James K.
Automatic dimensionality selection from the scree plot via the use of profile likelihood
- DOI:
10.1016/j.csda.2005.09.010 - 发表时间:
2006-11-15 - 期刊:
- 影响因子:1.8
- 作者:
Zhu, Mu;Ghodsi, Ali - 通讯作者:
Ghodsi, Ali
Zhu, Mu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhu, Mu', 18)}}的其他基金
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
411947-2011 - 财政年份:2013
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
411947-2011 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2012
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Development of pKa estimation scheme for polar amino acids considering protein conformational fluctuation
考虑蛋白质构象波动的极性氨基酸 pKa 估计方案的开发
- 批准号:
23K04674 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning from biological context for protein fitness estimation and design
从生物背景中学习蛋白质适合度估计和设计
- 批准号:
2593955 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Studentship
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Estimation of protein intakes by 24-hour urinalysis-prevention of locomotive syndrome by tailor-made food education
通过24小时尿液分析估算蛋白质摄入量-通过量身定制的食物教育预防运动综合症
- 批准号:
16H03049 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Estimation of trace elements supporting nutrient monitoring using protein fraction waveform data
使用蛋白质分数波形数据估计支持营养监测的微量元素
- 批准号:
15K08848 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An estimation method of protein networks for fluctuation cell cycle
细胞周期波动的蛋白质网络估计方法
- 批准号:
23760382 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8244428 - 财政年份:2010
- 资助金额:
$ 2.4万 - 项目类别: