Automated High-Throuput Estimation and Modeling of Protein Network Distributions

蛋白质网络分布的自动高通量估计和建模

基本信息

  • 批准号:
    8244428
  • 负责人:
  • 金额:
    $ 29.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This research is aimed at developing and testing methods that will enable proteome-wide high-throughput studies of the subcellular distributions of proteins that form networks (such as microtubules), and for identifying proteins whose distributions are related to these. More specifically we will test and further refine methods that we have developed to estimate the average properties (characterize the statistical variation) of the filament distributions for a large number of cells. Our aim is to use the power afforded by the availability of data arising from many (possibly thousands) of cells to estimate what is really at the heart of the question for high-throughput studies of proteins of this type: what is the overall average effect of some independent variable (drug or other experimental condition) on the network filament distribution of interest. Preliminary work has established the feasibility of this approach, and we propose to test it extensively with real data for microtubules in a variety of cell types under a variety of conditions that perturb distributions in known ways. The results will establish whether a single microtubule growth model (with changes in parameters) is valid for many cell types (i.e., to remove variation due solely to cell size and shape). We will also extend this method to determine the correlation (affinity) of many unknown proteins to filament networks for several proteome wide studies currently generating such data. The methods will be used to analyze images for thousands of proteins from existing and ongoing proteome-scale studies. The identification solely on the basis of image-based modeling of specific proteins as likely to be microtubule-associated will be tested for selected examples by comparison with information in existing protein databases and literature and by additional experimentation. The successful completion of this study would not only provide important new information about the location of many proteins, but will fill a current void in modeling approaches for proteome-wide studies and facilitate the mechanistic quantification of effects of different drugs, siRNAs or mutations in high throughput screening experiments. PUBLIC HEALTH RELEVANCE: This research is aimed at enabling fundamental understanding of subcellular filament-type protein structure and distribution through generative modeling approaches. The successful completion of this study would enable the development of modeling approaches for similar proteins and subcellular structures and facilitate the mechanistic quantification of effects of different drugs, siRNAs or mutations in high throughput screening experiments.
描述(由申请人提供):本研究旨在开发和测试方法,以实现对形成网络(例如微管)的蛋白质的亚细胞分布进行全蛋白质组高通量研究,并鉴定其分布与这些网络相关的蛋白质。更具体地说,我们将测试并进一步完善我们开发的方法来估计大量细胞的丝分布的平均属性(表征统计变化)。我们的目标是利用来自许多(可能是数千个)细胞的数据的可用性来估计此类蛋白质高通量研究问题的真正核心是什么:某些自变量(药物或其他实验条件)对感兴趣的网络细丝分布的总体平均影响是什么。初步工作已经确定了这种方法的可行性,我们建议在以已知方式扰乱分布的各种条件下,使用各种细胞类型中微管的真实数据对其进行广泛测试。结果将确定单个微管生长模型(参数变化)是否对许多细胞类型有效(即消除仅由于细胞大小和形状引起的变化)。我们还将扩展此方法,以确定许多未知蛋白质与丝网络的相关性(亲和力),以用于目前生成此类数据的多项蛋白质组范围研究。这些方法将用于分析现有和正在进行的蛋白质组规模研究中的数千种蛋白质的图像。仅基于可能与微管相关的特定蛋白质的基于图像的建模的识别将通过与现有蛋白质数据库和文献中的信息比较以及通过额外的实验来测试选定的例子。这项研究的成功完成不仅将提供有关许多蛋白质位置的重要新信息,还将填补目前全蛋白质组研究建模方法的空白,并促进高通量筛选实验中不同药物、siRNA 或突变效应的机械量化。 公共健康相关性:这项研究旨在通过生成模型方法对亚细胞丝状蛋白结构和分布有基本的了解。这项研究的成功完成将有助于开发类似蛋白质和亚细胞结构的建模方法,并有助于在高通量筛选实验中对不同药物、siRNA 或突变的作用进行机械量化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Kunde Rohde其他文献

Gustavo Kunde Rohde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金

High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10703488
  • 财政年份:
    2022
  • 资助金额:
    $ 29.61万
  • 项目类别:
High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10525286
  • 财政年份:
    2022
  • 资助金额:
    $ 29.61万
  • 项目类别:
Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
  • 批准号:
    10672626
  • 财政年份:
    2019
  • 资助金额:
    $ 29.61万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10063532
  • 财政年份:
    2019
  • 资助金额:
    $ 29.61万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10307595
  • 财政年份:
    2019
  • 资助金额:
    $ 29.61万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8771979
  • 财政年份:
    2014
  • 资助金额:
    $ 29.61万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    9369881
  • 财政年份:
    2014
  • 资助金额:
    $ 29.61万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8883458
  • 财政年份:
    2014
  • 资助金额:
    $ 29.61万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    8054738
  • 财政年份:
    2010
  • 资助金额:
    $ 29.61万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    7899624
  • 财政年份:
    2010
  • 资助金额:
    $ 29.61万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了