Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
基本信息
- 批准号:250419-2011
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Exemplified by the support vector machine and the AdaBoost algorithm, kernel methods and ensemble methods constituted much of the new research in statistical machine learning during the last decade. My proposed research will focus on the development of these two classes of methods for two very general data-analytic problems, which I call horizontal and vertical information selection.
Suppose we are given a data matrix, where the rows are observations and the columns are variables. By "vertical" selection, I mean the selection of important rows. In applications, these rows can be "bad guys" (e.g., fraudulent financial transactions) or "good guys" (e.g., chemical molecules with potential to inhibit a certain virus). By "horizontal" selection, I mean the selection of important columns. In applications, these columns are the most important factors that affect the outcome of interest (e.g., biomarkers for detecting a certain disease, or genes associated with a certain cancer). Due to the very general nature of these selection problems, my proposed research is expected to have broad practical implications. For example, a general paradigm for constructing very efficient kernel machines for vertical selection can benefit a wide spectrum of applied research, ranging from fraud detection to drug discovery.
I will be studying new ideas that I have proposed, such as "deep kernel machines" (DKMs) and "variable-selection ensembles" (VSEs), as well as establishing an Analytics and Informatics Laboratory (AI Lab; http://www.math.uwaterloo.ca/~ailab). Deeper understandings of DKMs and VSEs will further advance the field of statistical machine learning. The AI Lab will provide a platform for students to receive training and conduct research in machine learning and data mining by creating data-driven applications on the internet, such as recommendation systems. These systems are closely related to the theme of my proposal. They analyze data matrices whose columns are items and whose rows are users, and the objective is to recommend a few items to each user, or to collectively solve a horizontal selection problem for each fixed vertical dimension.
以支持向量机和AdaBoost算法为例,核方法和集成方法构成了过去十年中统计机器学习的许多新研究。我建议的研究将集中在两个非常一般的数据分析问题,我称之为横向和纵向信息选择这两类方法的发展。
假设我们有一个数据矩阵,其中行是观测值,列是变量。所谓“垂直”选择,我指的是重要行的选择。在应用程序中,这些行可以是“坏人”(例如,欺诈性金融交易)或“好人”(例如,具有抑制某种病毒的潜力的化学分子)。所谓“横向”选择,我指的是重要栏目的选择。在应用程序中,这些列是影响感兴趣结果的最重要因素(例如,用于检测某种疾病的生物标志物,或与某种癌症相关的基因)。由于这些选择问题的普遍性,我提出的研究预计将具有广泛的实际影响。例如,构建用于垂直选择的非常有效的核机器的一般范例可以使广泛的应用研究受益,从欺诈检测到药物发现。
我将研究我提出的新想法,如“深度内核机器”(DKM)和“变量选择集成”(VSE),以及建立分析和信息学实验室(AI Lab; http://www.math.uwaterloo.ca/tumailab)。对DKM和VSE的深入理解将进一步推动统计机器学习领域的发展。人工智能实验室将为学生提供一个平台,通过在互联网上创建数据驱动的应用程序(如推荐系统),接受机器学习和数据挖掘方面的培训和研究。这些制度与我的建议的主题密切相关。他们分析数据矩阵,其列是项目,其行是用户,目标是向每个用户推荐几个项目,或者共同解决每个固定垂直维度的水平选择问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhu, Mu其他文献
A factor analysis model for functional genomics
- DOI:
10.1186/1471-2105-7-216 - 发表时间:
2006-04-21 - 期刊:
- 影响因子:3
- 作者:
Kustra, Rafal;Shioda, Romy;Zhu, Mu - 通讯作者:
Zhu, Mu
Using machine learning algorithms to guide rehabilitation planning for home care clients
- DOI:
10.1186/1472-6947-7-41 - 发表时间:
2007-12-20 - 期刊:
- 影响因子:3.5
- 作者:
Zhu, Mu;Zhang, Zhanyang;Stolee, Paul - 通讯作者:
Stolee, Paul
Stochastic Stepwise Ensembles for Variable Selection
- DOI:
10.1080/10618600.2012.679223 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:2.4
- 作者:
Xin, Lu;Zhu, Mu - 通讯作者:
Zhu, Mu
Topology optimization considering multi-axis machining constraints using projection methods
- DOI:
10.1016/j.cma.2021.114464 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:7.2
- 作者:
Lee, Hak Yong;Zhu, Mu;Guest, James K. - 通讯作者:
Guest, James K.
Automatic dimensionality selection from the scree plot via the use of profile likelihood
- DOI:
10.1016/j.csda.2005.09.010 - 发表时间:
2006-11-15 - 期刊:
- 影响因子:1.8
- 作者:
Zhu, Mu;Ghodsi, Ali - 通讯作者:
Ghodsi, Ali
Zhu, Mu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhu, Mu', 18)}}的其他基金
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Networks: Estimation in Protein Molecules, Modeling of Transactional Data, and Application to Ensemble Learning
网络:蛋白质分子估计、事务数据建模以及集成学习的应用
- 批准号:
RGPIN-2016-03876 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
411947-2011 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
411947-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Kernels and ensembles for horizontal and vertical information selection
用于水平和垂直信息选择的内核和集成
- 批准号:
250419-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
西太平洋副热带高压的可预测性在1970s末前后的转变
- 批准号:41305067
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
MFB: Evaluating and Advancing Cryo-EM for RNA Conformational Ensembles
MFB:评估和推进 RNA 构象整体的冷冻电镜
- 批准号:
2330652 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Investigating disorder in dense NV ensembles in diamond
研究金刚石中致密 NV 系综的无序性
- 批准号:
2885796 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Smarter Ensembles for solar wind forecasts
用于太阳风预报的智能集成系统
- 批准号:
2890054 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Attosecond-pump attosecond-probe spectroscopy in non-equilibrium ensembles
非平衡系综中的阿秒泵浦阿秒探针光谱
- 批准号:
2892767 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Identifying the neural ensembles mediating fear generalization during adolescence
识别青春期介导恐惧泛化的神经系统
- 批准号:
10648352 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Reward-specific neural ensembles in the lateral orbitofrontal cortex modulate alcohol-biased choice behavior
外侧眶额皮质中的奖励特异性神经元调节酒精偏向的选择行为
- 批准号:
10679456 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Reorganization of cortical memory ensembles across time
皮质记忆群随时间的重组
- 批准号:
10680332 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Integrative single-cell spatial transcriptomic, anatomical, and functional profiling of brain-wide ensembles engaged by opioid relapse
与阿片类药物复发有关的全脑整体的综合单细胞空间转录组、解剖学和功能分析
- 批准号:
10772455 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别: