Quantum tori and their role in topological materials

量子环面及其在拓扑材料中的作用

基本信息

  • 批准号:
    542032-2019
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要--Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Koban, Matthew其他文献

Koban, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Koban, Matthew', 18)}}的其他基金

Liaison and Shellability
联络和可壳性
  • 批准号:
    552196-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Swimming the Chaotic Seas: Invariant Manifolds, Tori, and the Transport of Swimmers in Fluid Flows
在混乱的海洋中畅游:不变流形、托里和流体流动中游泳者的传输
  • 批准号:
    2314417
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
The reception of South European Literature in the Japanese children's magazine Akai Tori.
日本儿童杂志《赤鸟》对南欧文学的接待。
  • 批准号:
    22K13037
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spacecraft Trajectory Design via Quasi-periodic Invariant Tori.
通过准周期不变托里进行航天器轨迹设计。
  • 批准号:
    2598157
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Studentship
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
Reflection Lattices and Algebraic Tori
反射晶格和代数环面
  • 批准号:
    564579-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster-fault-tolerant routing methods in tori
tori中的集群容错路由方法
  • 批准号:
    19K11887
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
The soul curve of cmc tori
cmc托里的灵魂曲线
  • 批准号:
    414903103
  • 财政年份:
    2018
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Research Grants
Characterizing algebraic groups via maximal tori
通过最大环面表征代数群
  • 批准号:
    RGPIN-2017-05749
  • 财政年份:
    2018
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了