Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
基本信息
- 批准号:RGPIN-2017-06066
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
******My research forms part of the Langlands program, a branch of mathematics involving deep connections ***between number theory, automorphic forms, representation theory, and algebraic geometry. I study the properties***of representations of certain matrix groups known as reductive p-adic groups. These matrix groups are defined in ***terms of number theory - the matrix entries belong to p-adic fields - these fields are nonarchimedean completions of number ***fields (finite extensions of the rational numbers). In recent years, there has been considerable interest in harmonic analysis***on p-adic symmetric varieties and connections with the Langlands program. My work involves***the study and construction of distinguished representations of reductive p-adic groups. These distinguished representations ***exhibit specific symmetry properties relative to the involution that defines the p-adic symmetric space.***The basic building blocks in the theory of distinguished representations are the so-called relatively supercuspidal***representations. My main focus is on construction of relatively supercuspidal representations and the study of their properties,***particularly those that are relevant to the Langlands program.
我的研究是朗兰兹纲领的一部分,朗兰兹纲领是数学的一个分支,涉及数论、自守形式、表示论和代数几何之间的深刻联系。 我研究某些矩阵群的表示的性质,这些矩阵群被称为约化p进群。这些矩阵群是用数论的 * 术语定义的-矩阵元素属于p-adic域-这些域是数 * 域的非阿基米德完备化(有理数的有限扩展)。近年来,对p-adic对称簇的调和分析 * 以及与朗兰兹程序的联系有了相当大的兴趣。我的工作涉及 * 的研究和建设的区别表示约化p-adic集团。相对于定义p-adic对称空间的对合,这些特殊的表示 * 表现出特定的对称性质。区别表示理论的基本组成部分是所谓的相对超尖点表示。我的主要重点是相对超尖点表示的构造及其性质的研究,特别是那些与朗兰兹纲领相关的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murnaghan, Fiona其他文献
Murnaghan, Fiona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murnaghan, Fiona', 18)}}的其他基金
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups, distinguised representations
还原 p 进群上的特征和相关分布,可区分表示
- 批准号:
155502-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups, distinguised representations
还原p进群上的特征和相关分布,可区分表示
- 批准号:
155502-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
- 批准号:
EP/V046713/1 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sex on stage: using transgressive humour and North East narratives to disrupt reductive representations of sexuality and class.
舞台上的性:使用越界幽默和东北叙事来破坏对性和阶级的简化表述。
- 批准号:
2244575 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cocenters and Representations of Reductive p-adic Groups
还原p进群的中心和表示
- 批准号:
1801352 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Imprimitive representations of quasisimple finite reductive groups (A03)
拟简单有限还原群的原始表示 (A03)
- 批准号:
324786107 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
CRC/Transregios
Representations of Reductive Groups and Étale Hessenberg Varieties
还原群和 ätale Hessenberg 簇的表示
- 批准号:
1751940 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant














{{item.name}}会员




