Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
基本信息
- 批准号:RGPIN-2017-06066
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
******My research forms part of the Langlands program, a branch of mathematics involving deep connections ***between number theory, automorphic forms, representation theory, and algebraic geometry. I study the properties***of representations of certain matrix groups known as reductive p-adic groups. These matrix groups are defined in ***terms of number theory - the matrix entries belong to p-adic fields - these fields are nonarchimedean completions of number ***fields (finite extensions of the rational numbers). In recent years, there has been considerable interest in harmonic analysis***on p-adic symmetric varieties and connections with the Langlands program. My work involves***the study and construction of distinguished representations of reductive p-adic groups. These distinguished representations ***exhibit specific symmetry properties relative to the involution that defines the p-adic symmetric space.***The basic building blocks in the theory of distinguished representations are the so-called relatively supercuspidal***representations. My main focus is on construction of relatively supercuspidal representations and the study of their properties,***particularly those that are relevant to the Langlands program.
*我的研究是朗兰兹计划的一部分,兰兰兹计划是数学的一个分支,涉及数论、自同构形、表示论和代数几何之间的深层联系。我研究了某些被称为约化p-进群的矩阵群的表示的*性质。这些矩阵群定义在数论的*项中--矩阵项属于p-ady域--这些域是数*域(有理数的有限扩张)的非阿基米德补全。近年来,关于p进对称簇的调和分析及其与朗兰兹程序的联系引起了人们极大的兴趣。我的工作涉及*研究和构造约化p-进群的区别表示。这些区别表示*表现出相对于定义p-进对称空间的对合的特定对称性质。*区别表示理论中的基本构件是所谓的相对超尖*表示。我的主要关注点是相对超尖球面表示的构造及其性质的研究,*特别是那些与朗兰兹计划相关的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murnaghan, Fiona其他文献
Murnaghan, Fiona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murnaghan, Fiona', 18)}}的其他基金
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups; distinguished representations
还原p进群的特征和相关分布;
- 批准号:
155502-2012 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups, distinguised representations
还原 p 进群上的特征和相关分布,可区分表示
- 批准号:
155502-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Characters and related distributions on reductive p-adic groups, distinguised representations
还原p进群上的特征和相关分布,可区分表示
- 批准号:
155502-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
- 批准号:
EP/V046713/1 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sex on stage: using transgressive humour and North East narratives to disrupt reductive representations of sexuality and class.
舞台上的性:使用越界幽默和东北叙事来破坏对性和阶级的简化表述。
- 批准号:
2244575 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Cocenters and Representations of Reductive p-adic Groups
还原p进群的中心和表示
- 批准号:
1801352 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Representations of Reductive Groups and Étale Hessenberg Varieties
还原群和 ätale Hessenberg 簇的表示
- 批准号:
1751940 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Imprimitive representations of quasisimple finite reductive groups (A03)
拟简单有限还原群的原始表示 (A03)
- 批准号:
324786107 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
CRC/Transregios














{{item.name}}会员




