Analysis of Pseudo-Differential Operators

伪微分算子分析

基本信息

  • 批准号:
    RGPIN-2016-05353
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research is to extend the research on the twisted Laplacian that comes from taking the inverse Fourier transform of the sub-Laplacian on the Heisenberg group with respect to the center. The eigenvalues and the eigenfunctions of the twisted Laplacian are completely known and can be used to construct the heat kernel and Green function explicitly. One special feature of the twisted Laplacian is that each of its eigenvalues has infinite multiplicity, thus revealing little information about the structutre of the energy levels. It has recently been found by Gramchev, Pilipovic, Rodino and me that the product of the twisted Laplacian and its transpose, a fourth-order partial differential operator suitably re-normalized, has eigenvalues 1, 2, ..., and the multiplicity of each eigenvalue n is the number d(n) of Dirichlet divisors of n. This operator is called the twisted bi-Laplacian and denoted M. The asymptotic expansion of the counting function of the eigenvalues of M is then related to the multiplicities of the eigenvalues. The heat kernel and Green function of the twisted bi-Laplacian have recently been constructed by me and a Ph.D. student of mine. The trace and the determinant of the heat kernel and the Green function have also been computed. One of the objectives of this proposal is to fine-tune these existing results, to construct heat kernels and Green functions of powers of the twisted bi-Laplacian and to obtain asymptotic expansions of the counting functions of powers of the twisted bi-Laplacian. Related problems are the zeta function regularized traces and zeta function regularized determinants of the heat kernels and Green functions. The powers of the twisted bi-Laplacian are pseudo-differential operators related to the Heisenberg group, which has a one-dimensional center and can be thought of as time. Recently, another direction of my research with my former Ph.D. students has been focused on pseudo-differential operators on a class of Heisenberg groups with multi-dimensional centers (times) and on the so-called H-type groups, which also have multi-dimensional centers (times). Another objective of this research program is to construct the twisted Laplacians and the corresponding bi-Laplacians on these Heisenberg groups with multi-dimensional centers. These new twisted bi-Laplacians and their powers are entirely new pseudo-differential operators to be studied. The other objective of this research enterprise is to understand the multiplicities of the eigenvalues of the powers of twisted bi-Laplacians on Heisenberg groups with multi-dimensional centers with number theory and combinatorics, to find out the meanings of multi-dimensional centers in terms of geometry and mathematical physics, to explain and clarify that the deepest understanding of the study of pseudo-differential operators on Heisenberg groups with multi-dimensional centers lies in non-commutative quantization.
本研究是对海森堡群上的次拉普拉斯关于中心的逆傅立叶变换所产生的扭曲拉普拉斯的研究的推广。扭转拉普拉斯函数的本征值和本征函数是完全已知的,可以用来显式地构造热核和格林函数。扭曲拉普拉斯的一个特殊特征是,它的每个本征值都有无限的重数,因此揭示了很少关于能级结构的信息。Gramchev,Pilipovic,Rodino和Me最近发现扭转拉普拉斯算子与其转置算子的乘积具有特征值1,2,…,且每个特征值n的重数是n的Dirichlet因子的个数d(N)。这个算子称为扭曲双拉普拉斯算子,记为M。M的特征值的计数函数的渐近展开与特征值的重数有关。扭转双拉普拉斯函数的热核和格林函数是最近由我和我的一位博士生构造的。还计算了热核和格林函数的迹和行列式。这个建议的目的之一是微调这些现有的结果,构造扭双拉普拉斯幂的热核和格林函数,并获得扭双拉普拉斯幂的计数函数的渐近展开式。相关问题有Zeta函数、正则化迹和Zeta函数、热核的正则行列式和Green函数。扭曲的比拉普拉斯的幂是与海森堡群有关的伪微分算子,海森堡群具有一维中心,可以被认为是时间。最近,我和我以前的博士生一起研究的另一个方向是关于一类具有多维中心(时间)的Heisenberg群上的伪微分算子,以及所谓的H型群,它也具有多维中心(时间)。本研究的另一个目的是在这些具有多维中心的Heisenberg群上构造扭拉普拉斯算子和相应的双拉普拉斯算子。这些新的扭曲双拉普拉斯算子及其幂是有待研究的全新的伪微分算子。本研究的另一个目的是用数论和组合学的方法来理解具有多维中心的Heisenberg群上扭双拉普拉斯算子的本征值的多重性,找出多维中心在几何和数学物理上的意义,解释和澄清对具有多维中心的Heisenberg群上的伪微分算子研究的最深层次在于非对易量子化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wong, Man其他文献

A Comparative Study on Inverters Built With Dual-Gate Thin-Film Transistors Based on Depletion- or Enhancement-Mode Technologies
  • DOI:
    10.1109/ted.2022.3167940
  • 发表时间:
    2022-04-29
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Lei, Tengteng;Shi, Runxiao;Wong, Man
  • 通讯作者:
    Wong, Man
New insights into how popular electronic cigarette aerosols and aerosol constituents affect SARS-CoV-2 infection of human bronchial epithelial cells.
  • DOI:
    10.1038/s41598-023-31592-x
  • 发表时间:
    2023-04-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Phandthong, Rattapol;Wong, Man;Song, Ann;Martinez, Teresa;Talbot, Prue
  • 通讯作者:
    Talbot, Prue
Self-formed cylindrical microcapillaries through surface migration of silicon and their application to single-cell analysis
Realization and Characterization of a Bulk-Type All-Silicon High Pressure Sensor
A Physical Model for Metal-Oxide Thin-Film Transistor Under Gate-Bias and Illumination Stress

Wong, Man的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wong, Man', 18)}}的其他基金

Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory of phase space localization operators
相空间定位算子的谱理论
  • 批准号:
    8562-1996
  • 财政年份:
    1998
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory of phase space localization operators
相空间定位算子的谱理论
  • 批准号:
    8562-1996
  • 财政年份:
    1997
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral theory of phase space localization operators
相空间定位算子的谱理论
  • 批准号:
    8562-1996
  • 财政年份:
    1996
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Linear and nonlinear problems in partial and pseudo-differential operators
偏微分算子和伪微分算子中的线性和非线性问题
  • 批准号:
    8562-1992
  • 财政年份:
    1995
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Linear and nonlinear problems in partial and pseudo-differential operators
偏微分算子和伪微分算子中的线性和非线性问题
  • 批准号:
    8562-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Linear and nonlinear problems in partial and pseudo-differential operators
偏微分算子和伪微分算子中的线性和非线性问题
  • 批准号:
    8562-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于带状Pseudo-Hessian矩阵的弹性波全波形反演方法研究
  • 批准号:
    41704134
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Pseudo-Hermitian流形上的拟调和映射及其热流
  • 批准号:
    11626217
  • 批准年份:
    2016
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Pseudo-双代数相关的杨巴克斯特方程和上同调理论
  • 批准号:
    11401530
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
李pseudo-双代数及其相关代数的构建研究
  • 批准号:
    11226069
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Pseudo-goldstone粒子散射中共振区物理及BES新粒子的研究
  • 批准号:
    10705009
  • 批准年份:
    2007
  • 资助金额:
    13.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Pseudo-differential analysis on stratified groups
分层组的伪差异分析
  • 批准号:
    1832455
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
Analysis of Pseudo-Differential Operators
伪微分算子分析
  • 批准号:
    RGPIN-2016-05353
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Pseudo-random number generation and stability in numerical solution of stochastic differential equations
随机微分方程数值解中的伪随机数生成和稳定性
  • 批准号:
    19540124
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了