Essential spectra and global hypoellipticity of pseudo-differential operators

伪微分算子的本质谱和全局亚椭圆性

基本信息

  • 批准号:
    8562-2006
  • 负责人:
  • 金额:
    $ 0.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2008
  • 资助国家:
    加拿大
  • 起止时间:
    2008-01-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

The first objective is to compute the spectra and essential spectra for a class of elliptic pseudo-differential operators, which contains the heat operator as a canonical example. The Fredholmness of these operators are investigated. The global regularity of these operators in terms of weighted Sobolev spaces will also be studied. A related objective is to look at the same problems for the corresponding globally elliptic problems. Another objective is to consider the twisted Laplacian, which comes up as a quantum mechanical Hamiltonian with a magnetic potential. The twisted Laplacian is a degenerate elliptic operator, which is not globally elliptic. But it is globally hypoelliptic in the sense of Schwartz distributions. More refined notions of global hypoellipticity are explored. A very challenging problem is to find a class of degenerate pseudo-differential operators that contains the twisted Laplacian as a canonical example. The results arising in this project are significant ingredients towards an understanding of degenerate partial differential equations on noncompact manifolds. The first two objectives play an important role towards constructions of new classes of pseudo-differential operators for which ellipticity implies Fredholmness and global hypoellipticity in the Schwartz sense. The twisted Laplacian, like the heat operator in the first objective and the Hermite operator in the second objective, will turn out to be a canonical example of a new class of degenerate pseudo-differential operators, which are globally hypoelliptic in the Schwartz sense.
第一个目标是计算一类椭圆型伪微分算子的谱和本质谱,其中包含热算子作为典型例子。研究了这些算子的Fredholmness性。这些算子在加权Sobolev空间中的全局正则性也将被研究。一个相关的目标是看相同的问题,相应的全球椭圆问题。另一个目标是考虑扭曲的拉普拉斯算子,它是一个具有磁势的量子力学哈密顿算子。扭拉普拉斯算子是一个退化的椭圆算子,它不是整体椭圆的。但它在Schwartz分布意义下是全局亚椭圆的。更精细的概念,全球hypoellipticity进行了探讨。一个非常具有挑战性的问题是找到一类退化的伪微分算子,其中包含扭曲的拉普拉斯算子作为一个典型的例子。本计画的结果对于了解非紧流形上退化的偏微分方程具有重要的意义。前两个目标发挥了重要作用,对建设新的类的伪微分算子的椭圆性意味着Fredholmness和全球hypoellipticity在施瓦茨意义上。扭曲拉普拉斯算子,就像第一个目标中的热算子和第二个目标中的埃尔米特算子一样,将成为一类新的退化伪微分算子的典型例子,它们在施瓦茨意义下是全局亚椭圆的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wong, ManWah其他文献

Wong, ManWah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wong, ManWah', 18)}}的其他基金

Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of sums of vector fields
矢量场和的分析
  • 批准号:
    8562-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Essential spectra and global hypoellipticity of pseudo-differential operators
伪微分算子的本质谱和全局亚椭圆性
  • 批准号:
    8562-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual
Wavelet-based analysis of psuedo-differential operators
基于小波的伪微分算子分析
  • 批准号:
    8562-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非连续谱高频雷达信号的理论和应用研究
  • 批准号:
    60602039
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
利用AATSR和SPECTRA联合反演植被组分温度的方法研究
  • 批准号:
    40471095
  • 批准年份:
    2004
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on High-Precision Real-Gas Aerodynamics Prediction Technique Using High-Speed Vacuum Ultraviolet Absorption Spectra Fitting Method
高速真空紫外吸收光谱拟合法高精度真气气动预测技术研究
  • 批准号:
    23H01613
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
  • 批准号:
    2894203
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Studentship
Comparative Study of the High Harmonic Spectra of Transition Metal Compounds
过渡金属化合物高次谐波谱的比较研究
  • 批准号:
    2309321
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Standard Grant
Conference: Groups of dynamical origin, automata and spectra
会议:动力学起源、自动机和谱组
  • 批准号:
    2309562
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Standard Grant
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
  • 批准号:
    10713710
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
  • 批准号:
    23K04670
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fully automated protein NMR assignments and structures from raw time-domain data by deep learning
通过深度学习根据原始时域数据全自动进行蛋白质 NMR 分配和结构
  • 批准号:
    23K05660
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
  • 批准号:
    2327245
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Standard Grant
Research on absolutely continuous diffraction and dynamical spectra for S-adic tilings
S-adic平铺的绝对连续衍射和动力学光谱研究
  • 批准号:
    23K12985
  • 财政年份:
    2023
  • 资助金额:
    $ 0.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了