Data Driven Optimization for Smart Energy Usage
数据驱动优化智能能源使用
基本信息
- 批准号:544100-2019
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Screaming Power is an Ontario company that provides a mobile big data cloud platform for effective education of energy users on conservation, cost savings and continuous energy improvement. The proposed research is to develop a data driven decision-making method for Screaming Power's Utility and Enterprise applications, in order to generate optimal energy usage strategies in real-time using hourly meter and historical data. The ultimate goal of this method is not to fully automate the decision-making procedures, but to provide real-time recommendations that help all energy users and especially enterprises that manage multiple buildings to consume energy in a more adaptive and intelligent way to improve energy conservation and reduce carbon emissions. Different from the traditional demand side management research, the proposed research focuses on providing recommendations in real-time and with a variety of display modes. In addition, multiple optimal solutions will be provided for different user preferences and energy price/usage/weather condition scenarios. The anticipated outcomes of the research are a technical report that explains the method and demonstrates its effectiveness, as well as the computer codes realizing the method. The computer codes will be integrated into Screaming Power's mobile applications that will used by energy managers of federal government buildings in Ontario and potentially over 100,000 energy users in Ontario. The new data driven optimization method will contribute to the field of systems engineering, and it can benefit the decision-making for not only energy consumption, but also energy generation and GHG emissions tracking.
Screaming Power是一家安大略公司,提供移动的大数据云平台,用于对能源用户进行节能、节约成本和持续能源改进的有效教育。该研究旨在为Screaming Power的公用事业和企业应用开发一种数据驱动的决策方法,以便使用小时计和历史数据实时生成最佳能源使用策略。这种方法的最终目标不是完全自动化决策过程,而是提供实时建议,帮助所有能源用户,特别是管理多个建筑物的企业,以更适应和智能的方式消耗能源,以提高节能和减少碳排放。与传统的需求侧管理研究不同,本文的研究重点是实时提供建议,并具有多种显示模式。此外,还将针对不同的用户偏好和能源价格/使用/天气条件场景提供多种最佳解决方案。研究的预期成果是一份技术报告,解释该方法并证明其有效性,以及实现该方法的计算机代码。这些计算机代码将被集成到Screaming Power的移动的应用程序中,该应用程序将被安大略联邦政府大楼的能源管理人员以及安大略可能超过10万的能源用户使用。新的数据驱动优化方法将有助于系统工程领域,它不仅有利于能源消耗的决策,而且有利于能源生产和温室气体排放跟踪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Xiang其他文献
Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes.
- DOI:
10.1016/j.isci.2023.106022 - 发表时间:
2023-02-17 - 期刊:
- 影响因子:5.8
- 作者:
Kang, Jing;Li, Xiang;Zhou, Yunlu;Zhang, Ling - 通讯作者:
Zhang, Ling
Ligand Effects on the Hydrogen Evolution Reaction Catalyzed by Au13 and Pt@Au12: Alkynyl vs Thiolate
- DOI:
10.1021/acs.jpcc.1c08197 - 发表时间:
2021-10-19 - 期刊:
- 影响因子:3.7
- 作者:
Li, Xiang;Takano, Shinjiro;Tsukuda, Tatsuya - 通讯作者:
Tsukuda, Tatsuya
Preparation of a Klebsiella pneumoniae conjugate nanovaccine using glycol-engineered Escherichia coli.
使用乙二醇工程大肠杆菌制备肺炎克雷伯菌结合纳米疫苗。
- DOI:
10.1186/s12934-023-02099-x - 发表时间:
2023-05-06 - 期刊:
- 影响因子:6.4
- 作者:
Liu, Yan;Pan, Chao;Wang, Kangfeng;Guo, Yan;Sun, YanGe;Li, Xiang;Sun, Peng;Wu, Jun;Wang, Hengliang;Zhu, Li - 通讯作者:
Zhu, Li
Oestrogen ameliorates blood-brain barrier damage after experimental subarachnoid haemorrhage via the SHH pathway in male rats.
- DOI:
10.1136/svn-2022-001907 - 发表时间:
2023-06 - 期刊:
- 影响因子:5.9
- 作者:
Zhang, Jie;Li, Haiying;Xu, Zhongmou;Lu, Jinxin;Cao, Chang;Shen, Haitao;Li, Xiang;You, Wanchun;Chen, Gang - 通讯作者:
Chen, Gang
Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients.
用于表征和区分 PTSD 患者的动态功能连接组学特征
- DOI:
10.1002/hbm.22290 - 发表时间:
2014-04 - 期刊:
- 影响因子:4.8
- 作者:
Li, Xiang;Zhu, Dajiang;Jiang, Xi;Jin, Changfeng;Zhang, Xin;Guo, Lei;Zhang, Jing;Hu, Xiaoping;Li, Lingjiang;Liu, Tianming - 通讯作者:
Liu, Tianming
Li, Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Xiang', 18)}}的其他基金
Rigorous decomposition methods for planning and scheduling of energy networks
能源网络规划和调度的严格分解方法
- 批准号:
RGPIN-2019-05217 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Rigorous decomposition methods for planning and scheduling of energy networks
能源网络规划和调度的严格分解方法
- 批准号:
RGPIN-2019-05217 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Rigorous decomposition methods for planning and scheduling of energy networks
能源网络规划和调度的严格分解方法
- 批准号:
RGPIN-2019-05217 - 财政年份:2020
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Rigorous decomposition methods for planning and scheduling of energy networks
能源网络规划和调度的严格分解方法
- 批准号:
RGPIN-2019-05217 - 财政年份:2019
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Global optimization for nonlinear supply chain management under uncertainty
不确定性下非线性供应链管理的全局优化
- 批准号:
485798-2015 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Collaborative Research and Development Grants
Novel Optimization Models and Methods for Process Systems Engineering Under Uncertainty
不确定性下过程系统工程的新型优化模型和方法
- 批准号:
418411-2013 - 财政年份:2018
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Global optimization for nonlinear supply chain management under uncertainty
不确定性下非线性供应链管理的全局优化
- 批准号:
485798-2015 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Collaborative Research and Development Grants
Novel Optimization Models and Methods for Process Systems Engineering Under Uncertainty
不确定性下过程系统工程的新型优化模型和方法
- 批准号:
418411-2013 - 财政年份:2017
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Novel Optimization Models and Methods for Process Systems Engineering Under Uncertainty
不确定性下过程系统工程的新型优化模型和方法
- 批准号:
418411-2013 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Convergence of Sequences of Markov Chains
马尔可夫链序列的收敛性
- 批准号:
454116-2014 - 财政年份:2016
- 资助金额:
$ 1.28万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Operating Grants
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
- 批准号:
23K03659 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Integrating waste and resource management: Data-driven optimization of urban mining logistics
整合废物和资源管理:数据驱动的城市矿业物流优化
- 批准号:
RGPIN-2019-07172 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Data-driven optimization for DBS programming in temporal lobe epilepsy
颞叶癫痫 DBS 编程的数据驱动优化
- 批准号:
10574839 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Smart Supply Chain Management via Data Driven Optimization
通过数据驱动优化实现智能供应链管理
- 批准号:
RGPIN-2019-07115 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




