Data-driven optimization for DBS programming in temporal lobe epilepsy
颞叶癫痫 DBS 编程的数据驱动优化
基本信息
- 批准号:10574839
- 负责人:
- 金额:$ 38.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAffectAlgorithmsAnimal ModelAnimalsBrainCharacteristicsClimactericClinicalClinical TrialsConsumptionDataDeep Brain StimulationDevicesDiseaseEffectivenessElectric StimulationElectrical Stimulation of the BrainElectrodesEngineeringEpilepsyExcisionFaceFrequenciesGoalsHippocampus (Brain)Implanted ElectrodesIndividualIntelligenceIntractable EpilepsyLeadLearningMachine LearningMeasurementMeasuresMental DepressionMental disordersModelingNeurologicNeurosurgeonOperative Surgical ProceduresOutputParkinson DiseasePatientsPatternPersonsPhaseProcessPropertyProxyRattusReportingRiskRodent ModelSeizuresStandardizationStatistical ModelsSymptomsSystemTechnologyTemporal Lobe EpilepsyTestingTetanus ToxinTherapeuticTimeWorkbaseclinical implementationdesignexhaustionexperienceexperimental studyimprovedin vivoindividual patientnervous system disordernext generationnovelprototypepsychologicrelating to nervous systemresponsesimulation
项目摘要
Brain stimulation therapy is a life changing treatment for patients with neurological and psychiatric disorders,
including Parkinson’s disease, depression, and epilepsy. In this treatment, neurosurgeons implant electrodes
inside the brain that can deliver a wide range of electrical stimulation patterns. However, the next problem is
determining the optimal stimulation setting for a given patient. Given that even basic clinical stimulation devices
can be configured to millions of different stimulation settings, finding the right one is challenging. This problem
is exacerbated in epilepsy, where patients do not exhibit symptoms between seizures, making the process of
evaluating a setting’s effectiveness even more difficult. At its core, this is an optimization problem for which many
engineering solutions exist. We have developed a framework for designing optimization systems for neural
modulation that can be applied to a broad spectrum of different neural modulation paradigms. In this proposal,
we develop an optimization system for automatically and efficiently identifying the optimal stimulation setting to
maximally suppress seizures in a rodent model of epilepsy. Our previous work has shown that a particular type
of stimulation, asynchronous distributed stimulation, can reduce the frequency of seizures in the rat tetanus toxin
model of temporal lobe epilepsy. However, only a limited set of stimulation patterns were evaluated. In Aim 1,
we will build on this work to better characterize the differential effects of varying asynchronous distributed
stimulation parameters on seizures. These experiments will serve two purposes. First, they will clarify how
different subjects are affected by stimulation parameters and determine if, as in other neurological disorders
treated by brain stimulation, the best stimulation setting will vary from subject to subject. The second purpose is
to use the data collected to create a simulation platform for prototyping optimization systems. In Aim 2, we will
use the simulation platform prototype and tune different optimization systems. After determining which
optimization system performs best in our simulation platform, the optimization systems will be implemented for
real-time in vivo optimization to learn the subject specific stimulation settings that best reduce seizure frequency.
脑刺激疗法是一种改变神经和精神障碍患者生活的治疗方法,
包括帕金森氏症、抑郁症和癫痫。在这种治疗中,神经外科医生植入电极
在大脑内部,可以提供广泛的电刺激模式。然而,下一个问题是
确定给定患者的最佳刺激设置。考虑到即使是基本的临床刺激设备
可以配置为数百万种不同的刺激设置,找到合适的是具有挑战性的。这个问题
在癫痫中加重,患者在癫痫发作之间没有表现出症状,使这个过程
评估一个环境的有效性就更加困难了。从本质上讲,这是一个最优化问题,许多人
工程解决方案是存在的。我们开发了一个用于设计神经网络优化系统的框架
可广泛应用于不同神经调制范例的调制。在这份提案中,
我们开发了一个自动、高效地识别最优刺激设置的优化系统
在癫痫啮齿动物模型中最大限度地抑制癫痫发作。我们之前的工作表明,一种特殊的类型
对刺激,异步分布式刺激,可减少大鼠破伤风毒素惊厥发作的次数
颞叶癫痫模型。然而,只对一组有限的刺激模式进行了评估。在目标1中,
我们将在这项工作的基础上更好地描述变化的异步分布式的差异影响
癫痫发作的刺激参数。这些实验将有两个目的。首先,他们将澄清如何
不同的受试者会受到刺激参数的影响,并决定是否会像其他神经疾病一样
通过脑刺激治疗,最佳刺激设置将因受试者而异。第二个目的是
利用收集到的数据创建优化系统原型的仿真平台。在目标2中,我们将
利用仿真平台样机,对不同的优化系统进行调试。在确定哪一个之后
优化系统在我们的仿真平台上运行得最好,优化系统将在
实时体内优化,以了解受试者特定的刺激设置,最大限度地减少癫痫发作频率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT E GROSS其他文献
ROBERT E GROSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT E GROSS', 18)}}的其他基金
Development and validation of a viral vector for targeted inhibition of DG granule cells
用于靶向抑制 DG 颗粒细胞的病毒载体的开发和验证
- 批准号:
10648833 - 财政年份:2023
- 资助金额:
$ 38.07万 - 项目类别:
Development of a self-regulated neuroprotective gene therapy for Parkinsons Disease and other synucleinopathies
开发针对帕金森病和其他突触核蛋白病的自我调节神经保护基因疗法
- 批准号:
9809188 - 财政年份:2019
- 资助金额:
$ 38.07万 - 项目类别:
C3 transferase Gene Therapy for CNS Axon Regeneration
用于中枢神经系统轴突再生的 C3 转移酶基因治疗
- 批准号:
8873702 - 财政年份:2015
- 资助金额:
$ 38.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.07万 - 项目类别:
Research Grant