New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives

功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点

基本信息

  • 批准号:
    RGPIN-2016-04673
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This proposal develops novel statistical methodologies for flexible analysis of functional/array-valued brain imaging data, with the aim of providing a general framework for utilizing valuable information embedded in the brain imaging data to explain or predict a given outcome through Bayesian hierarchical modelling and its integration with statistical machine learning methods. In particular, the following specific aims are proposed:****In aim 1, a new class of Bayesian Growth Mixture Models for longitudinal outcome data that accommodate functional/array-valued brain imaging data as predictors is proposed. The main focus of this aim is to utilize mixture modelling to identify unobserved longitudinal trajectory pattern subgroups (i.e., latent classes), and develop a series of functional/tensor regression models to accommodate brain imaging data as covariates to predict the latent class memberships of longitudinal trajectories. ****In aim 2, a unified Bayesian modelling approach to joint analysis of functional/array-valued brain imaging data and cross-sectional outcome data is proposed. The focus is on flexible modelling of brain imaging data to capture informative latent data features, and simultaneous prediction of the outcome using the extracted latent features. ****In aim 3, the Bayesian hierarchical models in Aim 1 and 2 are extended by integrating with the Support Vector Machine (SVM) learning framework.****Although motivated by the problems of identifying highly informative/predictive features in the brain imaging data, the methodological innovations proposed are widely applicable to a number of different contexts that involve functional data and array-valued data with complex spatial correlation, for example, genetic studies. The proposed research will also advance training of highly qualified personnel (5 MSc students, 2 PhD students and 1 postdoc research fellow) to analyze high-dimensional complex data.**
该提案开发了新的统计方法,用于灵活分析功能/阵列值的脑成像数据,目的是提供一个通用框架,用于利用嵌入在脑成像数据中的有价值的信息,通过贝叶斯分层建模及其与统计机器学习方法的集成来解释或预测给定的结果。特别是,提出了以下具体目标:* 在目标1中,提出了一类新的贝叶斯增长混合模型,用于纵向结果数据,其容纳功能/阵列值脑成像数据作为预测因子。这一目标的主要焦点是利用混合建模来识别未观察到的纵向轨迹模式子组(即,潜在类),并开发一系列功能/张量回归模型,以适应脑成像数据作为协变量,以预测纵向轨迹的潜在类成员。**** 在目标2中,提出了一种统一的贝叶斯建模方法,用于联合分析功能/阵列值脑成像数据和横截面结果数据。重点是灵活建模的大脑成像数据,以捕捉信息的潜在数据特征,并使用提取的潜在特征的结果的同时预测。* 在目标3中,通过与支持向量机(SVM)学习框架集成,扩展了目标1和2中的贝叶斯分层模型。*虽然在脑成像数据中识别高信息/预测特征的问题的动机,提出的方法创新广泛适用于许多不同的情况下,涉及功能数据和数组值的数据与复杂的空间相关性,例如,遗传研究。拟议的研究还将促进高素质人才(5名硕士生,2名博士生和1名博士后研究员)的培训,以分析高维复杂数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang, Bei其他文献

Levels of HBV RNA in chronic HBV infected patients during first-line nucleos(t)ide analogues therapy.
  • DOI:
    10.1186/s13027-022-00473-9
  • 发表时间:
    2022-12-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiang, Bei;Dai, Qinghai;Liu, Yamin;Yu, Guangxin;Mi, Yuqiang
  • 通讯作者:
    Mi, Yuqiang
lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter
  • DOI:
    10.3892/or.2019.7444
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jiang, Bei;Yang, Bing;Lu, Wei
  • 通讯作者:
    Lu, Wei
Plastid phylogenomics and species discrimination in the "Chinese" clade of Roscoea (Zingiberaceae).
  • DOI:
    10.1016/j.pld.2023.03.012
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hu, Hai-Su;Mao, Jiu-Yang;Wang, Xue;Liang, Yu-Ze;Jiang, Bei;Zhang, De-Quan
  • 通讯作者:
    Zhang, De-Quan
Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces
反应中间体的直接观察以及碳酸氢根阴离子在铜表面 CO2 电化学还原反应中的作用
New eudesmane sesquiterpenes from Alpinia oxyphylla and determination of their inhibitory effects on microglia
益智山新桉树倍半萜及其对小胶质细胞的抑制作用测定

Jiang, Bei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang, Bei', 18)}}的其他基金

Novel Statistical Integration Methods for Multi-View Data
多视图数据的新颖统计集成方法
  • 批准号:
    RGPIN-2022-03034
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
  • 批准号:
    10722515
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
  • 批准号:
    10633591
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
  • 批准号:
    10772463
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
  • 批准号:
    10680043
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
  • 批准号:
    10797410
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Uncovering the role of a new DNA sequence pattern in nucleosome-protein interactions
揭示新的 DNA 序列模式在核小体-蛋白质相互作用中的作用
  • 批准号:
    10628145
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Predictive drivers of new onset, relapse, and progression of human autoimmunity in skin
人类皮肤自身免疫新发、复发和进展的预测驱动因素
  • 批准号:
    10658149
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Assessing risk for firearm injury and attitudes about new gun violence prevention laws in Michigan to enhance policy implementation
评估密歇根州枪伤风险和对新枪支暴力预防法的态度,以加强政策实施
  • 批准号:
    10811214
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
  • 批准号:
    10658688
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了