Novel Statistical Integration Methods for Multi-View Data

多视图数据的新颖统计集成方法

基本信息

  • 批准号:
    RGPIN-2022-03034
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

In the era of big data, both the volume and variety of patient data collected from routine clinical visits and medical research, are growing at an unprecedented pace, e.g., from medical records, genomic and neuroimaging data sources. Jointly analyzing such data obtained from various sources (also known as multi-view data) to integrate rich information has undoubtedly brought new promises for precision health, but nonetheless it also poses important and emerging challenges. First, the data from each source are typically high dimensional, with more features than the number of subjects. Second, the data from different sources could be of different types (e.g., continuous, categorical, counts and time-to-event) and of different formats, (e.g., multivariate, matrix-variate and tensor-variate). Lastly, missing data are inevitable during the large-scale data collection process. While many techniques have been developed to model each of these individual data types or formats separately, there are currently few methods that can jointly analyze high-dimensional mixed multi-view data while also properly handling often incomplete multi-view. The proposed research will address these issues and focus on the following specific aims:  Aim 1 will develop joint modeling strategies to extract low-dimensional features in the multi-view data, while distinguishing shared and unique features specific to different data sources, and simultaneous evaluate their prognostic abilities to predict the outcome of interest. Aim 2 will develop joint modeling strategies to cluster multi-view data, while separating relevant and irrelevant features, and simultaneously relate the associated subgroup memberships to the outcome of interest. Aim 3 will propose methods to embed the Bayesian Additive Regression Trees in the joint modeling framework to relate multi-view data to the outcome data.  This proposal focuses on developing novel Bayesian hierarchical modelling approaches, which are well suited to incorporate complex data structures with latent variables and importantly enable exact inference. Motivated by analyzing mixed multi-view data in medical studies, the proposed research will provide novel and computationally efficient analytic tools and strategies (i.e., user friendly R packages) to allow scientists in medical research to explore their data holistically and to bring us closer to meeting the ultimate goals in precision health. In the meanwhile, the methodological innovations proposed are widely applicable in other scientific domains that involve heterogenous multi-view data.
在大数据时代,从常规临床访问和医学研究中收集的患者数据的数量和种类都以前所未有的速度增长,例如,从医疗记录、基因组和神经成像数据源。联合分析从各种来源获得的此类数据(也称为多视图数据)以整合丰富的信息无疑为精准健康带来了新的希望,但尽管如此,它也带来了重要的和新出现的挑战。首先,来自每个源的数据通常是高维的,具有比主题数量更多的特征。其次,来自不同来源的数据可以是不同类型的(例如,连续的、分类的、计数和事件发生时间)和不同的格式,(例如,多变量、矩阵变量和张量变量)。最后,在大规模数据收集过程中,数据缺失是不可避免的。虽然已经开发了许多技术来分别对这些单独的数据类型或格式中的每一种进行建模,但目前很少有方法可以联合分析高维混合多视图数据,同时还可以正确处理通常不完整的多视图。拟议的研究将解决这些问题,并专注于以下具体目标:目标1将开发联合建模策略,以提取多视图数据中的低维特征,同时区分特定于不同数据源的共享和独特特征,并同时评估其预测能力,以预测感兴趣的结果。目标2将开发联合建模策略来聚类多视图数据,同时分离相关和不相关的特征,并同时将相关的子组成员关系与感兴趣的结果联系起来。目标3将提出在联合建模框架中嵌入贝叶斯加性回归树的方法,以将多视图数据与结果数据相关联。该建议侧重于开发新颖的贝叶斯分层建模方法,该方法非常适合将复杂的数据结构与潜在变量相结合,并且重要的是能够实现精确的推理。受医学研究中混合多视图数据分析的启发,所提出的研究将提供新颖的和计算上有效的分析工具和策略(即,用户友好的R软件包),使医学研究中的科学家能够全面地探索他们的数据,并使我们更接近实现精准健康的最终目标。同时,所提出的方法创新在其他涉及异质多视图数据的科学领域也具有广泛的应用价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang, Bei其他文献

Levels of HBV RNA in chronic HBV infected patients during first-line nucleos(t)ide analogues therapy.
  • DOI:
    10.1186/s13027-022-00473-9
  • 发表时间:
    2022-12-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiang, Bei;Dai, Qinghai;Liu, Yamin;Yu, Guangxin;Mi, Yuqiang
  • 通讯作者:
    Mi, Yuqiang
lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter
  • DOI:
    10.3892/or.2019.7444
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jiang, Bei;Yang, Bing;Lu, Wei
  • 通讯作者:
    Lu, Wei
Plastid phylogenomics and species discrimination in the "Chinese" clade of Roscoea (Zingiberaceae).
  • DOI:
    10.1016/j.pld.2023.03.012
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hu, Hai-Su;Mao, Jiu-Yang;Wang, Xue;Liang, Yu-Ze;Jiang, Bei;Zhang, De-Quan
  • 通讯作者:
    Zhang, De-Quan
Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces
反应中间体的直接观察以及碳酸氢根阴离子在铜表面 CO2 电化学还原反应中的作用
New eudesmane sesquiterpenes from Alpinia oxyphylla and determination of their inhibitory effects on microglia
益智山新桉树倍半萜及其对小胶质细胞的抑制作用测定

Jiang, Bei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang, Bei', 18)}}的其他基金

New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
New statistical methods for functional and array-valued brain imaging data: joint modelling and statistical machine learning perspectives
功能和数组值脑成像数据的新统计方法:联合建模和统计机器学习观点
  • 批准号:
    RGPIN-2016-04673
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Estimation in semiparametric measurement error models
半参数测量误差模型的估计
  • 批准号:
    379009-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
  • 批准号:
    10714882
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
  • 批准号:
    2242820
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
  • 批准号:
    10889298
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Identifying genetically driven gene dysregulation in Alzheimer's disease and related dementias using statistical data integration
使用统计数据整合识别阿尔茨海默病和相关痴呆症中遗传驱动的基因失调
  • 批准号:
    10659349
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
  • 批准号:
    548103-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10415744
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10632124
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Statistical methods for structural and functional integration in multi-modal neuroimaging data
多模态神经影像数据结构和功能整合的统计方法
  • 批准号:
    10296729
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
  • 批准号:
    548103-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了