Metrics and intersections in symplectic and contact topology

辛和接触拓扑中的度量和交集

基本信息

  • 批准号:
    RGPIN-2017-05596
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Symplectic and contact topology is a rapidly developing area of modern mathematics that has its roots in classical physics - classical mechanics and optics - but has already become an established broad field with ties to many other disciplines - algebraic geometry, differential geometry, singularity theory, algebraic topology, dynamical systems, and others. It is primarily based on measuring two-dimensional areas in even-dimensional manifolds, instead of the lengths measured in Riemannian geometry. All symplectic manifolds locally look the same - like a neighborhood of a point in the classical phase-space of a mechanical system. It is therefore a global, topological theory. The natural symmetries in this theory, the so-called Hamiltonian diffeomorphisms, directly generalize the time-evolution in phase-space of a mechanical system. Contact topology is the odd-dimensional analogue of symplectic topology - locally modelled on the extended phase-space - that is closely related to the part of Riemannian geometry that describes the propagation of light.******My research focuses on the metric and topological study of the infinite-dimensional groups and spaces that appear naturally in symplectic and contact topology. In this study I employ various tools: primarily filtered Floer theory (based on the analysis of nonlinear Cauchy-Riemann operators) and its newly introduced relation to persistence modules (originating in data sciences), which is a way of obtaining quantitative, invariant information from geometric intersection patterns in symplectic topology, and also notions of geometric quantization (based on Spin^c-Dirac operators), and geometric group theory, studying the geometry of groups viewed from afar (the notion of quasi-morphisms and quasi-isometric embeddings, in particular).******This proposal consists primarily of three directions of research which fall under the above unified research program, and share methods of filtered Floer theory and persistence, containing each a number of shorter term and longer term aspects. These are: 1. Metrics on the Hamiltonian group, persistence modules, and related topics, 2. Metrics on the space of Lagrangian submanifolds, the cobordism category, and versions of the Fukaya category, 3. Metrics on groups of contactomorphisms and related subjects. In addition, I preview a few projects, some long term and some short term, having to do with the other tools that I like to use.******As part of my program, in the next 5 years, I plan to supervise 5 undergraduate students, about 2 Masters students, 2 Ph.D. students, one of which co-supervised with a colleague in U de M, and one post-doctoral fellow, co-supervised with two of my colleagues in U de M. I expect my program to yield new results, methods, and directions of research, and to resolve open questions and conjectures in the field. It would be visible internationally and contribute to mathematics in Canada.
辛拓扑和接触拓扑学是现代数学中一个发展迅速的领域,它起源于经典物理-经典力学和光学-但已经成为一个与许多其他学科联系在一起的广泛领域-代数几何、微分几何、奇点理论、代数拓扑学、动力系统等。它主要基于测量偶数维流形中的二维面积,而不是以黎曼几何测量的长度。所有的辛流形在局部上看起来都是一样的--就像一个力学系统的经典相空间中的一个点的邻域。因此,这是一种全球性的拓扑学理论。该理论中的自然对称性,即所谓的哈密顿微分同胚,直接推广了力学系统相空间中的时间演化。接触拓扑是辛拓扑的奇维模拟--局部模拟在扩展的相空间上--与描述光传播的黎曼几何部分密切相关。*我的研究集中在自然出现在辛拓扑和接触拓扑学中的无限维群和空间的度规和拓扑研究上。在这项研究中,我使用了各种工具:初级过滤Floer理论(基于对非线性Cauchy-Riemann算子的分析)及其与持久模的新引入的关系(源于数据科学),持久模是从辛拓扑中的几何相交模式获得定量不变信息的一种方式,以及几何量子化的概念(基于自旋、c-Dirac算子)和几何群论,从远处研究群的几何(特别是准态射和准等距嵌入的概念)。*本建议主要包括三个研究方向,属于上述统一研究计划,并分享了过滤Floer理论和持久力的方法,包含了各自较短期和较长期的一些方面。它们是:1.关于哈密顿群、持久模和相关主题的度量;2.关于拉格朗日子流形空间、余边范畴和Fukaya范畴的度量;3.关于联络同构群和相关主题的度量。此外,我预览了几个项目,一些是长期的,一些是短期的,与我喜欢使用的其他工具有关。*作为我计划的一部分,在接下来的5年里,我计划指导5名本科生,大约2名硕士学生,2名博士生,其中一人与一名密歇根大学的同事共同指导,以及一名博士后研究员,与我在密歇根大学的两名同事共同指导。我希望我的项目能产生新的结果、方法和研究方向,并解决该领域的公开问题和猜想。它将在国际上可见一斑,并为加拿大的数学做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelukhin, Egor其他文献

Shelukhin, Egor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shelukhin, Egor', 18)}}的其他基金

Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
  • 批准号:
    RGPIN-2017-05596
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

A real-time traffic signal system for safe and efficient intersections
实时交通信号系统,确保安全高效的十字路口
  • 批准号:
    LP220100226
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Linkage Projects
Doctoral Dissertation Research: Intersections of Labor, Language, and Value in the Production of Emerging Technologies
博士论文研究:新兴技术生产中的劳动力、语言和价值的交叉点
  • 批准号:
    2343003
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Mood 'n Heart: intersections between mood disorders and cardiometabolic health.
情绪与心脏:情绪障碍与心脏代谢健康之间的交叉点。
  • 批准号:
    485657
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Miscellaneous Programs
Understanding the Intersections between Care Experience and Ethnicity in Criminal Justice Involvement
了解刑事司法参与中护理经验与种族之间的交叉点
  • 批准号:
    ES/W002221/2
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Fellowship
Partnership to Assess Viral and Immune Landscape Intersections with ONcology for People Living with HIV (PAVILION)
与肿瘤学合作评估艾滋病病毒感染者的病毒和免疫景观交叉点 (PAVILION)
  • 批准号:
    10598373
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
  • 批准号:
    2324706
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Exploring health equity for Asian American, Native Hawaiian, and Pacific Islander Adolescents in a large epidemiologic study: Intersections of ethnicity, sexual orientation, and gender identity
在大型流行病学研究中探索亚裔美国人、夏威夷原住民和太平洋岛民青少年的健康公平性:种族、性取向和性别认同的交叉点
  • 批准号:
    10645666
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Trowels, Trenches and #TransRights: Intersections of Archaeology, Transphobia and Liberation Politics
抹子、沟槽和
  • 批准号:
    2888315
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Some problems on unlikely intersections
不太可能的交叉路口的一些问题
  • 批准号:
    2906374
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Low threshold economic engagement and health equity in inner-city populations: Assessing intersections of economic engagement, work, and health using The ASSET Study
内城区人口的低门槛经济参与和健康公平:利用 ASSET 研究评估经济参与、工作和健康的交叉点
  • 批准号:
    500543
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了