Developing Special Functions tools for contemporary problems in physics

为当代物理学问题开发特殊函数工具

基本信息

  • 批准号:
    RGPIN-2016-03728
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

`Special functions' are mathematical functions that arise from solving `special' problems in physics. It is known that many physical and real-world phenomena modeled using differential equations. Specifically, various quantum systems reduced to the analysis of second-order differential equations with polynomial coefficients. Until a few decades ago, the theory of special functions was considered exhausted with well-established results entirely available to physicists. Recently, however, new trends in physics emerged, for instance: Supersymmetry, Supergravity, Integrable systems, Quantum confined systems, Quantization techniques, Coherent states, and Factorization method (Darboux transformations, Bi-spectrality), that required innovative techniques to study them.***Over the past six years, my research interests focused on:***1) Developing exact and approximate solutions to eigenvalues problems in physics. The tools were based on the Asymptotic Iteration Method (AIM); a widely used method developed in collaboration with R. L. Hall and H. Ciftic 2003.***2) Analyzing the analytic solutions of linear differential equations with polynomial coefficients that go beyond the standard classification. This analysis allowed intensive study of different classes of differential equations used extensively in theoretical physics.***3) Analyzing the necessary and sufficient conditions under which higher-order differential equations admits polynomial solutions. This study was particularly useful in enormous applications.***4) Providing a systematic study of Appell hypergeometric series to present concrete ready-to-use formulas to solve problems in physics and engineering.***5) Studying the multivariate orthogonal polynomials, particularly, 2D-Zernike polynomials that are orthogonal 2D polynomials in the unit disc. Consequently, several quantization problems were analyzed and studied. Several new summation formulas and integral representations were introduced and proved in details.***The aims and objectives of the present research proposal are:***1) To introduce novel methods based on Special Functions to understand contemporary problems in physics.***2) To exhibit new exact and iterative solutions to physical eigenvalue problems, especially for those where analytic solutions are not possible or not available.***3) To study the different confluent forms of the Heun differential equation and analyze the conditions that permit polynomial solutions. Such studies will lead to a better understanding of the quasi-exactly solvable spectral problems.***4) To extend my early work on Appell series, focusing on recent applications in physics.***5) To elaborate on the iterative aspects of AIM, that yield a highly accurate approximation of eigenvalue problems.***6) To introduce a discrete version of AIM, focusing on analyzing second-order difference equation and discrete orthogonal polynomials.**
“特殊函数”是解决物理中“特殊”问题时产生的数学函数。众所周知,许多物理和现实世界的现象都是用微分方程来建模的。具体来说,各种量子系统被简化为具有多项式系数的二阶微分方程的分析。直到几十年前,人们还认为特殊函数理论已经穷尽了,物理学家完全可以得到完善的结果。然而,最近出现了一些新的物理学趋势,例如:超对称、超引力、可积系统、量子受限系统、量子化技术、相干态和因式分解方法(达布变换、双光谱),这些都需要创新的技术来研究。***在过去的六年里,我的研究兴趣主要集中在:***1)发展物理特征值问题的精确和近似解。工具基于渐近迭代法(AIM);与r.l. Hall和h.c iftic 2003年合作开发的一种广泛使用的方法。***2)分析超出标准分类的多项式系数线性微分方程的解析解。这种分析使人们能够深入研究理论物理中广泛使用的不同类型的微分方程。***3)分析高阶微分方程存在多项式解的充分必要条件。这项研究在大量应用中特别有用。***4)对阿佩尔超几何级数进行了系统的研究,为解决物理和工程问题提供了具体的实用公式。***5)研究多元正交多项式,特别是单位圆盘上的二维正交多项式2D- zernike多项式。因此,对几个量化问题进行了分析和研究。介绍并详细证明了几个新的求和公式和积分表示。***本研究计划的目的和目标是:***1)引入基于特殊函数的新方法来理解当代物理问题。***2)展示物理特征值问题的精确和迭代的新解,特别是对于那些不可能或不可用解析解的问题。***3)研究Heun微分方程的不同合流形式,并分析多项式解存在的条件。这样的研究将有助于更好地理解准精确可解的光谱问题。***4)扩展我早期关于Appell系列的工作,专注于最近在物理学中的应用。***5)详细说明AIM的迭代方面,它产生了特征值问题的高度精确的近似。***6)引入离散版本的AIM,重点分析二阶差分方程和离散正交多项式

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saad, Nasser其他文献

On some polynomial potentials in d-dimensions
  • DOI:
    10.1063/1.4817857
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Brandon, David;Saad, Nasser;Dong, Shi-Hai
  • 通讯作者:
    Dong, Shi-Hai
Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential
  • DOI:
    10.1002/andp.201300089
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Sun, Guo-Hua;Dong, Shi-Hai;Saad, Nasser
  • 通讯作者:
    Saad, Nasser
Role of Tigecycline for the Treatment of Urinary Tract Infections.
Exact and approximate solutions of Schrodinger's equation for a class of trigonometric potentials
  • DOI:
    10.2478/s11534-012-0147-3
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ciftci, Hakan;Hall, Richard L.;Saad, Nasser
  • 通讯作者:
    Saad, Nasser
Schrodinger spectrum generated by the Cornell potential
  • DOI:
    10.1515/phys-2015-0012
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Hall, Richard L.;Saad, Nasser
  • 通讯作者:
    Saad, Nasser

Saad, Nasser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saad, Nasser', 18)}}的其他基金

Old and New, and many things in-between: Perspectives on theoretical physics and special functions
新旧,以及介于两者之间的许多事物:理论物理和特殊函数的观点
  • 批准号:
    DDG-2022-00011
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Development Grant
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
  • 批准号:
    RGPIN-2016-03728
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
  • 批准号:
    RGPIN-2016-03728
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
  • 批准号:
    RGPIN-2016-03728
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
  • 批准号:
    RGPIN-2016-03728
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Special Functions tools for contemporary problems in physics
为当代物理学问题开发特殊函数工具
  • 批准号:
    RGPIN-2016-03728
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging supersymmetric quantum mechanics, Heun's equation and the asymptotic iteration method
连接超对称量子力学、Heun 方程和渐近迭代方法
  • 批准号:
    249507-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging supersymmetric quantum mechanics, Heun's equation and the asymptotic iteration method
连接超对称量子力学、Heun 方程和渐近迭代方法
  • 批准号:
    249507-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging supersymmetric quantum mechanics, Heun's equation and the asymptotic iteration method
连接超对称量子力学、Heun 方程和渐近迭代方法
  • 批准号:
    249507-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging supersymmetric quantum mechanics, Heun's equation and the asymptotic iteration method
连接超对称量子力学、Heun 方程和渐近迭代方法
  • 批准号:
    249507-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

非阶化Hamiltonial型和Special型李代数的表示
  • 批准号:
    10701002
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research on Phase-Free Disaster Prevention Functions in Special Needs Schools
特需学校无阶段防灾功能研究
  • 批准号:
    23KJ2227
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Special Values of L-functions
L 函数的特殊值
  • 批准号:
    RGPIN-2018-06313
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Special Functions for Diagonal Harmonics and Schubert Calculus
合作研究:对角谐波和舒伯特微积分的特殊函数
  • 批准号:
    2154282
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
  • 批准号:
    2303864
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
study will follow the work of Dr Clare Dunning and Professor Peter Clarkson on orthogonal polynomials and special functions.
这项研究将遵循克莱尔·邓宁博士和彼得·克拉克森教授在正交多项式和特殊函数方面的工作。
  • 批准号:
    2876144
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Modular varieties, generalized Fermat equations, and special functions
模簇、广义费马方程和特殊函数
  • 批准号:
    RGPIN-2017-03892
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Old and New, and many things in-between: Perspectives on theoretical physics and special functions
新旧,以及介于两者之间的许多事物:理论物理和特殊函数的观点
  • 批准号:
    DDG-2022-00011
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Development Grant
Elucidation of evolutionary and molecular basis of animal special functions based on genome information and its application to highly functional sensors
基于基因组信息阐明动物特殊功能的进化和分子基础及其在高功能传感器中的应用
  • 批准号:
    22K19097
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Special Functions for Diagonal Harmonics and Schubert Calculus
合作研究:对角谐波和舒伯特微积分的特殊函数
  • 批准号:
    2154281
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Advanced Special Functions and Symbolic Computation
高级特殊函数和符号计算
  • 批准号:
    574656-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了