Generalized Superprocesses
广义超级过程
基本信息
- 批准号:RGPIN-2016-06704
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Superprocesses are measure-valued stochastic processes. As one of the fundamental examples of superprocesses, Dawson-Watanabe superBrownian motion arises as the space-time-mass scaling limit of empirical measures of spatially distributed branching particle systems. The other fundamental example, also arising as a scaling limit of particle systems, is the probability-measure-valued Fleming-Viot superprocess which describes the evolution of the relative frequencies of different genotypes in a large population undergoing genetic drifting (re-sampling) together with possible mutation, selection and recombination.****We plan to carry out researches on interacting superBrownian motions and support properties of general Fleming-Viot processes.****It is always an interesting problem to understand superBrownian motions with mean field interactions, i.e. those superBrownian motions whose branching mechanisms depend on the states of the measure-valued processes. The probability law of such a process is often specified as the unique solution to the corresponding martingale problem. It has been a challenging problem to show the uniqueness of solution to the martingale problem. For the one-dimensional superBrownian motion, in recent work of Xiong (2013) the pathwise uniqueness of solution to an SPDE satisfied by the "distribution function'' of the superBrownian motion is proved via associating the SPDE with a backward doubly SDE. We plan to adapt the approach of Xiong (2013) to establish the uniqueness of solution to the associated martingale problem for the superBrownian motion with mean field branching rate. We will also investigate the extinction behaviors of such processes.****The support properties of Fleming-Voit processes are relatively less understood until recently. Using the lookdown particle representation of Donnelly and Kurtz, previous progresses have been made in Liu and Zhou (2012, 2015) and in Zhou (2014) on studying the support properties of Lambda-Fleming-Viot processes with general reproduction mechanisms and with Brownian spatial motion. We plan to explore asymptotic estimates on hitting probabilities of the Lambda-Fleming-Voit processes with Brownian spatial motion. We also plan to further study the disconnectedness of support for such a process in lower dimensions and the support propagation phenomena for Fleming-Viot processes with Levy spatial motions.****The proposed researches are expected to make remarkable contributions to the theory of measure-valued processes by bringing new insight to superprocesses with mean field interactions and providing new techniques and better understanding to Fleming-Viot processes with general reproduction mechanisms.***************************
超过程是测值随机过程。作为超过程的基本例子之一,Dawson-Watanabe超布朗运动作为空间分布的分枝粒子系统经验测度的时空质量标度极限而产生。另一个基本的例子也是粒子系统的标度极限,它描述了在经历遗传漂移(重采样)的大种群中不同基因型的相对频率的演变以及可能的突变、选择和重组。*我们计划开展相互作用的超布朗运动的研究,并支持一般Fleming-Viot过程的性质。*理解平均场相互作用的超布朗运动一直是一个有趣的问题,即那些分支机制依赖于被测值过程的状态的超布朗运动。这种过程的概率律通常被指定为相应的鞅问题的唯一解。如何证明此问题解的唯一性一直是一个具有挑战性的问题。对于一维超布朗运动,在熊(2013)最近的工作中,通过将超布朗运动的“分布函数”与向后的二重SDE联系起来,证明了由超布朗运动的“分布函数”所满足的SPDE解的路径唯一性。我们计划采用熊(2013)的方法来建立具有平均场分枝率的超布朗运动的相关鞅问题解的唯一性。我们还将研究这类过程的灭绝行为。*直到最近,对Fleming-Voit过程的支持性质的了解还相对较少。利用Donnelly和Kurtz的向下粒子表示,刘和周(2012,2015)和周(2014)在研究具有一般再生机制和布朗空间运动的Lambda-Fleming-Viot过程的支撑性方面取得了进展。我们计划研究具有布朗空间运动的Lambda-Fleming-Voit过程的命中概率的渐近估计。我们还计划进一步研究具有Levy空间运动的Fleming-Viot过程在低维支持的不连通性和支持传播现象。*所提出的研究将为具有平均场相互作用的超过程带来新的见解,并为具有一般复制机制的Fleming-Viot过程提供新的技术和更好的理解,从而为测值过程理论做出显著贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Xiaowen其他文献
Metal and F dual-doping to synchronously improve electron transport rate and lifetime for TiO2 photoanode to enhance dye-sensitized solar cells performances
金属和F双掺杂可同步提高TiO2光阳极的电子传输速率和寿命,从而增强染料敏化太阳能电池的性能
- DOI:
10.1039/c4ta07068b - 发表时间:
2015-02 - 期刊:
- 影响因子:11.9
- 作者:
Fang, Yanyan;Zhou, Xiaowen;Lin, Yuan;Pan, Feng - 通讯作者:
Pan, Feng
A Novel Magnetic Contrast Agent for Gastrointestinal Mucosa-Targeted Imaging Through Oral Administration
- DOI:
10.1166/jbn.2019.2771 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Cheng, Jiejun;Zhou, Xiaowen;Xu, Jianrong - 通讯作者:
Xu, Jianrong
Branching particle systems in spectrally one-sided L,vy processes
光谱单侧 L,vy 过程中的分支粒子系统
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
He, Hui;Li, Zenghu;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges.
深度学习在骨肿瘤中的新兴应用:当前进展和挑战
- DOI:
10.3389/fonc.2022.908873 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Zhou, Xiaowen;Wang, Hua;Feng, Chengyao;Xu, Ruilin;He, Yu;Li, Lan;Tu, Chao - 通讯作者:
Tu, Chao
Stochastic generalized Burgers equations driven by fractional noises
分数噪声驱动的随机广义 Burgers 方程
- DOI:
10.1016/j.jde.2011.07.032 - 发表时间:
2012-01-15 - 期刊:
- 影响因子:2.4
- 作者:
Jiang, Yiming;Wei, Tingting;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Zhou, Xiaowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Xiaowen', 18)}}的其他基金
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Functional Itô-calculus for superprocesses and application of superprocesses to counterparty risk
超级过程的函数 IT 演算以及超级过程在交易对手风险中的应用
- 批准号:
388370633 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Research Grants
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advances in superprocesses and nonlinear PDE's
超级过程和非线性偏微分方程的进展
- 批准号:
1020672 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Superprocesses: universality, uniqueness and applications
超级过程:普遍性、独特性和应用
- 批准号:
5398-2004 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Superprocesses with dependent spatial motion
具有相关空间运动的超级过程
- 批准号:
348552-2007 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Superprocesses with dependent spatial motion
具有相关空间运动的超级过程
- 批准号:
348552-2007 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Superprocesses: universality, uniqueness and applications
超级过程:普遍性、独特性和应用
- 批准号:
5398-2004 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual