Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
基本信息
- 批准号:249554-2011
- 负责人:
- 金额:$ 0.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Superprocesses are measure-valued stochastic processes that have found many applications in the studies of interacting particle systems, stochastic partial differential equations and population genetics. Two fundamental examples for superprocesses are the Dawson-Watanabe superprocess and the Fleming-Viot superprocess. In this project, we propose the following research on these two superprocesses.
In the first part of the project, we want to introduce a probability-measure-valued stochastic process that generalizes the classical Fleming-Viot superprocess for population genetics by incorporating the coalescent with simultaneous multiple collisions in its dual process. We plan to implement a novel approach to establish the existence and uniqueness for such a process involving mutation, selection and recombination. We are going to study the properties for this process and its connection to SPDE. We also plan to further exploit this approach to set up and study the related generalized stepping-stone model. My current PhD student, Huili Liu, is going to work on this topic.
It has been a very interesting and often challenging problem to study superprocesses with mean field interactions, i.e. the parameters of such a superprocess depend on the whole state of the process. In the second part of the project, we plan to study these processes. We will start with the superprocess with dependent spatial motion and with branching rate depending on the current state of the superprocess. I am going to support a new PhD student to work on this part of the project.
The third part of this project concerns the exit problem for one-dimensional Dawson-Watanabe superprocess with Levy spatial motion. For superBrownian motion with one-dimensional spectrally negative Levy spatial motion starting with a point mass at the origin, we plan to understand how it exits from a collection of parallel straight lines on the space-time plane.
超过程是测量值随机过程,在相互作用粒子系统、随机偏微分方程和种群遗传学的研究中有许多应用。超过程的两个基本例子是Dawson-Watanabe超过程和Fleming-Viot超过程。在这个项目中,我们建议对这两个超过程进行以下研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Xiaowen其他文献
Metal and F dual-doping to synchronously improve electron transport rate and lifetime for TiO2 photoanode to enhance dye-sensitized solar cells performances
金属和F双掺杂可同步提高TiO2光阳极的电子传输速率和寿命,从而增强染料敏化太阳能电池的性能
- DOI:
10.1039/c4ta07068b - 发表时间:
2015-02 - 期刊:
- 影响因子:11.9
- 作者:
Fang, Yanyan;Zhou, Xiaowen;Lin, Yuan;Pan, Feng - 通讯作者:
Pan, Feng
A Novel Magnetic Contrast Agent for Gastrointestinal Mucosa-Targeted Imaging Through Oral Administration
- DOI:
10.1166/jbn.2019.2771 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Cheng, Jiejun;Zhou, Xiaowen;Xu, Jianrong - 通讯作者:
Xu, Jianrong
Branching particle systems in spectrally one-sided L,vy processes
光谱单侧 L,vy 过程中的分支粒子系统
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
He, Hui;Li, Zenghu;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges.
深度学习在骨肿瘤中的新兴应用:当前进展和挑战
- DOI:
10.3389/fonc.2022.908873 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Zhou, Xiaowen;Wang, Hua;Feng, Chengyao;Xu, Ruilin;He, Yu;Li, Lan;Tu, Chao - 通讯作者:
Tu, Chao
Stochastic generalized Burgers equations driven by fractional noises
分数噪声驱动的随机广义 Burgers 方程
- DOI:
10.1016/j.jde.2011.07.032 - 发表时间:
2012-01-15 - 期刊:
- 影响因子:2.4
- 作者:
Jiang, Yiming;Wei, Tingting;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Zhou, Xiaowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Xiaowen', 18)}}的其他基金
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2021
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2018
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2017
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2016
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2012
- 资助金额:
$ 0.95万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Engineered Affimers for cryo-EM studies of unsolved protein structures
用于未解蛋白质结构冷冻电镜研究的工程仿射器
- 批准号:
2878046 - 财政年份:2023
- 资助金额:
$ 0.95万 - 项目类别:
Studentship
Seeking 'Closure' in Unsolved Homicide Cases
寻求“结案”悬而未决的凶杀案
- 批准号:
FT210100241 - 财政年份:2022
- 资助金额:
$ 0.95万 - 项目类别:
ARC Future Fellowships
Assessing the utility of long-read genome sequencing to identify genetic causes of unsolved rare diseases
评估长读基因组测序在识别未解决的罕见疾病的遗传原因方面的效用
- 批准号:
473742 - 财政年份:2022
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
Solving the genomics of unsolved rare life-threatening COVID-19 using genome sequencing
利用基因组测序解决尚未解决的罕见危及生命的 COVID-19 的基因组学问题
- 批准号:
467728 - 财政年份:2022
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
Solve-Mosaicism: Using deep-DNA and single-cell sequencing to investigate the contribution of mosaicism to unsolved rare genetic disease
解决镶嵌现象:利用深度 DNA 和单细胞测序来研究镶嵌现象对未解决的罕见遗传病的贡献
- 批准号:
436140 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
Integrative Genomic Applications to Understand the Etiology of Unsolved Craniofacial Anomalies
综合基因组应用来了解未解决的颅面异常的病因
- 批准号:
10390442 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Solve-Mosaicism: Using deep-DNA and single-cell sequencing to investigate the contribution of mosaicism to unsolved rare genetic disease
解决镶嵌现象:利用深度 DNA 和单细胞测序来研究镶嵌现象对未解决的罕见遗传病的贡献
- 批准号:
441259 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
Investigation of the utility of transcriptome sequencing for the resolution of unsolved rare genetic diseases
研究转录组测序在解决未解决的罕见遗传病方面的效用
- 批准号:
441245 - 财政年份:2020
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
Solving unsolved neuromuscular diseases: harnessing the power of phenotype and data integration strategies to optimise diagnosis and discovery
解决未解决的神经肌肉疾病:利用表型和数据集成策略的力量来优化诊断和发现
- 批准号:
412896 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Fellowship Programs
A theoretical and empirical challenge to unsolved problems in the analysis of the leading indicator property of the term spread
对期限利差领先指标属性分析中未解决问题的理论和实证挑战
- 批准号:
19K01767 - 财政年份:2019
- 资助金额:
$ 0.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)