Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
基本信息
- 批准号:RGPIN-2021-04100
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Continuous-state branching process (CSBP for short) arises either from time-population scaling limit of the classical discrete-state Galton-Watson branching processes or from the Lamperti transform of a spectrally positive Lévy process stopped whenever reaching 0. Recent progresses have been made in introducing population models whose reproduction mechanisms depend on features of the entire populations. Among them a class of CSBPs with nonlinear branching mechanisms is introduced in Li (2019). They are obtained by generalized Lamperti type random time transformations from spectrally positive Lévy processes with general rate functions. Intuitively, the branching rate for such a process depends on its current population size. As a result, the additive branching property does not hold anymore and many standard methods for CSBPs fail. The nonlinear branching mechanism allows exotic properties such as coming down from infinity, which is investigated in detail in Foucart et al. (2020) with speeds of coming down from infinity identified for certain classes of rate functions. The boundary behaviors are also investigated in Li et al. (2019a) for more general nonlinear CSBPs. In the same spirit, Ren et al. (2019) propose and study a stochastic Lotka-Volterra population dynamics of two populations modeled by a system of two stochastic differential equations driven by independent Lévy noises, where both populations evolve according to nonlinear CSBPs of Li et al. (2019a) and the branching rates of the second population depend on the first population. We plan to continue with the study on the nonlinear CSBPs and the related interacting population systems. We are interested in the extinguishing behaviors of the nonlinear CSBP and want to know, when it occurs, how slowly the process approaches to 0. We also want to prove the strong Feller property for nonlinear CSBPs, which we believe will help to investigate the quasi-stationary distributions of the nonlinear CSBPs. We are going to further study the models in Li et al. (2019a) and the models in Ren et al. (2019). For the nonlinear CSBPs of Li et al. (2019a), a more challenging open problem is to establish sharp integral tests on boundary classification. For the stochastic population dynamics of Ren et al. (2019), we plan to introduce and study population models with two-way interactions. We also propose to explore the possibility of incorporating the spatial structures to study the similar behaviors for superprocesses and related SPDEs with mean field intersections. The proposed research helps to better understand the effects of interactions within and (or) between populations on the extreme behaviors of the population dynamics. In addition, since the boundary behaviors for general Markov processes and for solutions to general SDEs with jumps have not been systematically investigated, the proposed research is also expected to make significant contributions to the theory of stochastic processes.
连续态分支过程(Continuous-state branching process,简称CSBP)起源于经典离散态Galton-Watson分支过程的时间-布居标度极限,或者起源于当到达0时停止的谱正Lévy过程的Lamperti变换。近年来,在引入种群模型方面取得了一些进展,这些模型的繁殖机制取决于整个种群的特征。其中,Li(2019)引入了一类具有非线性分支机制的CSBPs。它们是从具有一般速率函数的谱正Lévy过程通过广义Lamperti型随机时间变换得到的。直觉上,这样一个过程的分支率取决于它当前的种群规模。结果,加性支化性质不再成立,许多标准的CSBP方法失败了。非线性分支机制允许奇异的性质,例如从无穷大下降,这在Foucart等人(2020)中进行了详细研究,其中确定了某些类速率函数从无穷大下降的速度。Li等人(2019 a)还研究了更一般的非线性CSBPs的边界行为。本着同样的精神,Ren et al.(2019)提出并研究了两个种群的随机Lotka-Volterra种群动力学,该种群动力学由独立Lévy噪声驱动的两个随机微分方程系统建模,其中两个种群都根据Li et al.(2019 a)的非线性CSBP进化,第二个种群的分支率取决于第一个种群。 我们计划继续对非线性CSBPs和相关的相互作用种群系统进行研究。我们感兴趣的是非线性CSBP的熄灭行为,并想知道,当它发生时,该过程如何缓慢地接近0。我们还想证明非线性CSBPs的强Feller性质,我们相信这将有助于研究非线性CSBPs的准平稳分布。我们将进一步研究Li等人(2019 a)的模型和Ren等人(2019)的模型。对于Li et al.(2019 a)的非线性CSBPs,一个更具挑战性的开放问题是建立边界分类的尖锐积分检验。对于Ren et al.(2019)的随机种群动力学,我们计划引入并研究具有双向相互作用的种群模型。我们还建议探索的可能性,将空间结构的超过程和相关的SPDE与平均场相交的研究类似的行为。该研究有助于更好地理解种群内部和(或)种群之间的相互作用对种群动态极端行为的影响。此外,由于一般马尔可夫过程的边界行为和一般带跳随机微分方程的解还没有得到系统的研究,所提出的研究也有望对随机过程理论做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Xiaowen其他文献
Metal and F dual-doping to synchronously improve electron transport rate and lifetime for TiO2 photoanode to enhance dye-sensitized solar cells performances
金属和F双掺杂可同步提高TiO2光阳极的电子传输速率和寿命,从而增强染料敏化太阳能电池的性能
- DOI:
10.1039/c4ta07068b - 发表时间:
2015-02 - 期刊:
- 影响因子:11.9
- 作者:
Fang, Yanyan;Zhou, Xiaowen;Lin, Yuan;Pan, Feng - 通讯作者:
Pan, Feng
A Novel Magnetic Contrast Agent for Gastrointestinal Mucosa-Targeted Imaging Through Oral Administration
- DOI:
10.1166/jbn.2019.2771 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:2.9
- 作者:
Cheng, Jiejun;Zhou, Xiaowen;Xu, Jianrong - 通讯作者:
Xu, Jianrong
Branching particle systems in spectrally one-sided L,vy processes
光谱单侧 L,vy 过程中的分支粒子系统
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
He, Hui;Li, Zenghu;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges.
深度学习在骨肿瘤中的新兴应用:当前进展和挑战
- DOI:
10.3389/fonc.2022.908873 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Zhou, Xiaowen;Wang, Hua;Feng, Chengyao;Xu, Ruilin;He, Yu;Li, Lan;Tu, Chao - 通讯作者:
Tu, Chao
Stochastic generalized Burgers equations driven by fractional noises
分数噪声驱动的随机广义 Burgers 方程
- DOI:
10.1016/j.jde.2011.07.032 - 发表时间:
2012-01-15 - 期刊:
- 影响因子:2.4
- 作者:
Jiang, Yiming;Wei, Tingting;Zhou, Xiaowen - 通讯作者:
Zhou, Xiaowen
Zhou, Xiaowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Xiaowen', 18)}}的其他基金
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Generalized Superprocesses
广义超级过程
- 批准号:
RGPIN-2016-06704 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于血浆外泌体中piwi-interacting RNA和microRNA原位检测的乳腺癌液体活检方法研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
杨树光敏色素互作因子4 (Phytochrome Interacting Factor 4, PIF4) 调控植物生长与季节性休眠的分子机理研究
- 批准号:31800561
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
受体相互作用蛋白3(Receptor-interacting protein 3,RIP3)调控神经元缺血性程序性坏死的作用及机制研究
- 批准号:81271272
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
拟南芥DIF(DRIP1-Interacting Factor)在胁迫信号应答中的功能分析
- 批准号:31200202
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Systems Approach to Understanding the Interacting Factors of the Local Food Environment for Population Health
了解当地食品环境对人口健康的相互作用因素的系统方法
- 批准号:
10413542 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
A Systems Approach to Understanding the Interacting Factors of the Local Food Environment for Population Health
了解当地食品环境对人口健康的相互作用因素的系统方法
- 批准号:
10680389 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
A Systems Approach to Understanding the Interacting Factors of the Local Food Environment for Population Health
了解当地食品环境对人口健康的相互作用因素的系统方法
- 批准号:
10451695 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
A Systems Approach to Understanding the Interacting Factors of the Local Food Environment for Population Health
了解当地食品环境对人口健康的相互作用因素的系统方法
- 批准号:
9815905 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
RAPID: Interacting effects of disturbances on population demography
RAPID:干扰对人口统计的相互作用影响
- 批准号:
1801289 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Interacting stochastic (partial) differential equations, combinatorial stochastic processes and duality in spatial population dynamics
空间群体动态中的相互作用随机(偏)微分方程、组合随机过程和对偶性
- 批准号:
221756484 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Priority Programmes
Dissertation Research: Interacting Impacts of Multiple Pathogens on Population Dynamics of an Endangered Amphibian
论文研究:多种病原体对濒危两栖动物种群动态的相互作用影响
- 批准号:
0808577 - 财政年份:2008
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
The impact of interacting processes on population dynamics.
相互作用过程对种群动态的影响。
- 批准号:
NE/D013763/1 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
The impact of interacting processes on population dynamics.
相互作用过程对种群动态的影响。
- 批准号:
NE/D014352/1 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant