Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
基本信息
- 批准号:10487746
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-23 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:BackCell SeparationCellsChemicalsChemistryComplementary DNADNADNA sequencingDataDevelopmentDevicesElectrodesEnzymesEpigenetic ProcessEquipmentFutureGenerationsGenetic TranscriptionGenomeGenomicsGoalsGoldHumanKineticsLabelLengthLongevityMetalsMethodsModificationNucleic AcidsNucleotidesOpticsPseudouridineRNARNA SequencesRNA-Directed DNA PolymeraseReaderReverse engineeringSystemTechnologyTimebasecostdark matterelectric fieldgenome sequencingnanoporepreservationreference genomesingle cell analysissingle moleculesuccesstooltranscriptometranscriptome sequencingtranscriptomicsvoltagewaveguide
项目摘要
Project Summary / Abstract
Progress in genome technologies over the past few decades has delivered a dramatic cost reduction in DNA
sequencing and vast increases in read lengths, the latter afforded by development of new single-molecule
sequencing technologies. These advances enabled probing regions of the genome that were considered as
“dark matter” up until recently, as well as the assembly of new high-quality reference genomes. In addition to
genome sequencing, these single-molecule methods have opened up new applications for probing chemical
modifications in DNA, by either probing the kinetics of sequencing-by-synthesis using optical waveguides, or
by electrically distinguishing modified bases using nanopores. Currently, efforts are made to create robust
methods for direct RNA sequencing, so that information about RNA sequence, epigenetic modifications, and
quantity, can be obtained. In a single human cell, only a few picograms of RNA and DNA are available, and
since epigenetic modifications in these nucleic acids cannot be multiplied, a recognized goal of future
sequencing technologies is to reduce the amount of genomic material that can be analyzed at picogram levels.
We have recently developed a method for loading picogram-level DNA and RNA into zero-mode waveguides
(ZMWs), and have demonstrated DNA sequencing of a long DNA fragment, achieved by fabricating porous
ZMWs (PZMWs) in which a porous material was embedded at the ZMW bottoms. However, challenges with
the chemistry and longevity of porous materials have limited the throughput of this system. In this proposal, we
will develop an entirely new method for direct RNA sequencing that enables quantitative transcriptome analysis
and RNA base modification information, requiring only picogram-level input RNA. First, we have developed a
new type of ZMW that contains a metal-disk electrode embedded underneath it. Applying voltage across the
ZMWs produces an electric field that assists with DNA and RNA capture. These new devices allow vastly
increased throughput over the previous generation PZMWs, as well as substantial quality improvements to the
data obtained. Second, for the sequencing engine we will employ MarathonRT, an ultra-processive reverse
transcriptase that converts RNA molecules to complementary DNA (cDNA) molecules by enzymatic replication
robustly and accurately, more so than currently used enzymes used for RNA sequencing. Third, we will employ
advanced single-cell RNA extraction and gold-standard RNA quantification methods. Backed by extensive
preliminary data, we will integrate MarathonRT as the engine, PtZMWs as the sensitive sequence readers and
advanced single-cell sorting and RNA extraction tools, to develop for the first time quantitative RNA expression
profiles from truly single-cell material (i.e., no amplification). Additionally, using our ability to follow the
replication kinetics by MarathonRT, we will probe chemical modifications preserved in these RNA molecules,
such as methyladenine and pseudouridine. Success in this unique approach will revolutionize transcriptome
analysis from single-cell material by providing a workflow for epi/transcriptomics at unprecedented sensitivity.
项目总结/摘要
过去几十年来,基因组技术的进步大大降低了DNA的成本。
测序和阅读长度的大幅增加,后者是通过开发新的单分子
测序技术。这些进展使得能够探测基因组中被认为是
“暗物质”直到最近,以及新的高质量参考基因组的组装。除了
基因组测序,这些单分子方法开辟了新的应用,探测化学
通过使用光波导探测合成测序的动力学,或者
通过使用纳米孔电区分修饰的碱基。目前,正在努力建立一个强大的
直接RNA测序的方法,以便获得有关RNA序列、表观遗传修饰和
量,可以获得。在单个人类细胞中,只有几皮克的RNA和DNA是可用的,
由于这些核酸中的表观遗传修饰不能成倍增加,
测序技术的目的是减少可以在皮克水平上分析的基因组材料的量。
我们最近开发了一种将皮克级DNA和RNA加载到零模波导中的方法
(ZMW),并且已经证明了长DNA片段的DNA测序,通过制造多孔的
ZMW(PZMW),其中多孔材料嵌入ZMW底部。然而,挑战与
多孔材料的化学性质和寿命限制了该系统的吞吐量。在本提案中,我们
将开发一种全新的直接RNA测序方法,
和RNA碱基修饰信息,只需要皮克级的输入RNA。首先,我们制定了一个
新型ZMW包含嵌入其下方的金属盘电极。在ZMW两端施加电压
ZMW产生电场,有助于DNA和RNA捕获。这些新设备可以极大地
与上一代PZMW相比,吞吐量有所增加,
获得的数据。其次,对于测序引擎,我们将采用MarathonRT,一种超过程反向
通过酶复制将RNA分子转化为互补DNA(cDNA)分子的转录酶
稳健和准确,比目前用于RNA测序的酶更好。第三,我们将采用
先进的单细胞RNA提取和金标准RNA定量方法。以广泛的
初步数据,我们将整合MarathonRT作为引擎,PtZMW作为敏感的序列阅读器,
先进的单细胞分选和RNA提取工具,首次开发定量RNA表达
来自真正单细胞材料的分布(即,无放大)。此外,利用我们的能力,
通过MarathonRT的复制动力学,我们将探测这些RNA分子中保留的化学修饰,
如甲基腺嘌呤和假尿苷。这种独特方法的成功将彻底改变转录组
通过以前所未有的灵敏度为epi/转录组学提供工作流程,从单细胞材料进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meni Wanunu其他文献
Meni Wanunu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meni Wanunu', 18)}}的其他基金
Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
- 批准号:
10204556 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
Ion Fountain Nanopore Readers for High-Resolution DNA and RNA Sequencing
用于高分辨率 DNA 和 RNA 测序的 Ion Fountain 纳米孔读数器
- 批准号:
10448254 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10348785 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10161799 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Single-cell direct RNA sequencing using electrical zero-mode waveguides and engineered reverse transcriptases
使用电零模式波导和工程逆转录酶进行单细胞直接 RNA 测序
- 批准号:
10565946 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
- 批准号:
9914480 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Direct picogram DNA and RNA sequencing using nanopore Zero-mode waveguides
使用纳米孔零模波导直接进行皮克 DNA 和 RNA 测序
- 批准号:
9356545 - 财政年份:2016
- 资助金额:
$ 12.38万 - 项目类别:
相似海外基金
Microscopy-based cell separation, selective propagation, and selective single cell sequencing
基于显微镜的细胞分离、选择性增殖和选择性单细胞测序
- 批准号:
RGPIN-2020-05412 - 财政年份:2022
- 资助金额:
$ 12.38万 - 项目类别:
Discovery Grants Program - Individual
Behaviour-based cell separation to interrogate host cell heterogeneity in CAR-T cell therapies
基于行为的细胞分离,以探究 CAR-T 细胞疗法中宿主细胞的异质性
- 批准号:
461308 - 财政年份:2022
- 资助金额:
$ 12.38万 - 项目类别:
Operating Grants
Microscopy-based cell separation, selective propagation, and selective single cell sequencing
基于显微镜的细胞分离、选择性增殖和选择性单细胞测序
- 批准号:
RGPIN-2020-05412 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
Discovery Grants Program - Individual
Development of cell separation technology using a quadrupole capillary dielectrophoretic device
使用四极毛细管介电泳装置的细胞分离技术的开发
- 批准号:
20K04276 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High throughput cell separation device
高通量细胞分离装置
- 批准号:
447860429 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Major Research Instrumentation
Microscopy-based cell separation, selective propagation, and selective single cell sequencing
基于显微镜的细胞分离、选择性增殖和选择性单细胞测序
- 批准号:
RGPIN-2020-05412 - 财政年份:2020
- 资助金额:
$ 12.38万 - 项目类别:
Discovery Grants Program - Individual
Wide-field microscope to support research programs in image cytometry and image-based cell separation
宽视场显微镜支持图像细胞计数和基于图像的细胞分离研究项目
- 批准号:
RTI-2020-00530 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Research Tools and Instruments
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917295 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Characterization of Magnetic Particle Performance in Cell Separation
细胞分离中磁性颗粒性能的表征
- 批准号:
523032-2018 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Collaborative Research: RUI: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:RUI:使用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917299 - 财政年份:2019
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant