Advanced bio-inspired adhesive materials
先进仿生粘合材料
基本信息
- 批准号:RGPIN-2017-04464
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advanced manufacturing technologies have proven the feasibility of micro-fabrication of polymeric materials that can mimic the reversible and reusable adhesive properties of gecko toe pads, utilizing van der Waals intermolecular interaction. This is achieved by creation of a superficial microstructure comprised of micro- and nano-metric pillars called fibrils. With intimate contact generated at the tip of these fibrils, van der Waals forces develop. Hierarchical contact subdivision of this form allows for the generation of a relevant global adhesive force at the macroscopic scale. In general no permanent chemical bonding is involved in this phenomenon, and as such it can be repeated indefinitely as long as the mechanical and geometrical features of the interface of the material intended for adhesion do not deteriorate. The proliferation of the emerging technologies derived from such bio-inspired synthetic adhesives, which range from industrial robotics to locomotion in extreme environments (e.g. microgravity), is bringing new challenges to the framework of solid mechanics in the need for improved design of such materials. Such improvements can only be guided by a deeper knowledge of the phenomena involved. For example, the mechanism of detachment of fibrillar adhesive materials is still not completely understood at every length scale. The literature reports a large number of investigations of the detachment of one single fibril, while the mutual interaction of a multitude of them is still commonly neglected. This yields crude approximations, particularly given that the size of interfacial defects can be commonly found at a larger length scales than that of individual fibrils. My aim is to investigate the mechanism of detachment of such interfaces at multiple length scales and, from this, deduce improved design principles to be applied across multiple levels of structural hierarchy. Furthermore, it should be observed that thus far theoretical and experimental work done on this subject has been focused on the adhesion on non-deformable surfaces thus neglecting the compliance of the adhered material. The proliferation of emerging wearable technologies, which in some cases see the implantation of devices on the human body, is giving rise to a need for the development of “bio-compatible” adhesive materials. Such materials should be capable of sticking on biological tissue in a reversible and reusable manner. This new challenge has inspired the main goal of the proposed research program.
先进的制造技术已经证明了聚合物材料微制造的可行性,这些材料可以利用货车分子间相互作用来模拟壁虎趾垫的可逆且可重复使用的粘合性能。这是通过创建由称为原纤维的微米和纳米柱组成的表面微观结构来实现的。随着这些原纤维尖端产生的密切接触,产生了货车德瓦尔斯力。这种形式的分层接触细分允许在宏观尺度上产生相关的全局粘附力。一般来说,这种现象不涉及永久的化学键合,因此,只要用于粘合的材料的界面的机械和几何特征不劣化,它就可以无限地重复。从这种生物启发的合成粘合剂衍生的新兴技术的扩散,从工业机器人到极端环境中的运动(例如微重力),正在为固体力学的框架带来新的挑战,需要改进这种材料的设计。只有对所涉现象有更深入的了解,才能指导这种改进。例如,纤维状粘合剂材料的分离机制在每个长度尺度上仍然没有完全理解。文献报道了大量的调查,一个单一的原纤维的脱离,而他们中的许多人的相互作用仍然是通常被忽视。这产生了粗略的近似值,特别是考虑到界面缺陷的尺寸通常可以在比单个原纤维更大的长度尺度上发现。我的目的是调查在多个长度尺度的分离机制,这样的接口,并从这个,推导出改进的设计原则,适用于多层次的结构层次。此外,应该观察到,迄今为止,关于该主题所做的理论和实验工作都集中在不可变形表面上的粘附上,从而忽略了粘附材料的顺应性。新兴的可穿戴技术的扩散,在某些情况下,将设备植入人体,正在引起对开发“生物相容性”粘合剂材料的需求。这种材料应该能够以可逆和可重复使用的方式粘附在生物组织上。这一新的挑战激发了拟议研究计划的主要目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bacca, Mattia其他文献
A Model for the Mullins Effect in Multinetwork Elastomers
- DOI:
10.1115/1.4037881 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:2.6
- 作者:
Bacca, Mattia;Creton, Costantino;McMeeking, Robert M. - 通讯作者:
McMeeking, Robert M.
Load sharing in bioinspired fibrillar adhesives with backing layer interactions and interfacial misalignment
- DOI:
10.1016/j.jmps.2016.04.008 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:5.3
- 作者:
Bacca, Mattia;Booth, Jamie A.;McMeeking, Robert M. - 通讯作者:
McMeeking, Robert M.
The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis
- DOI:
10.1039/d1sm01710a - 发表时间:
2022-03-30 - 期刊:
- 影响因子:3.4
- 作者:
Agostinelli, Daniele;Elfring, Gwynn J.;Bacca, Mattia - 通讯作者:
Bacca, Mattia
Mechanics of diffusion-mediated budding and implications for virus replication and infection
- DOI:
10.1098/rsif.2022.0525 - 发表时间:
2022-11-02 - 期刊:
- 影响因子:3.9
- 作者:
Bacca, Mattia - 通讯作者:
Bacca, Mattia
Continuous dynamic recrystallization during severe plastic deformation
- DOI:
10.1016/j.mechmat.2015.05.008 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:3.9
- 作者:
Bacca, Mattia;Hayhurst, David R.;McMeeking, Robert M. - 通讯作者:
McMeeking, Robert M.
Bacca, Mattia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bacca, Mattia', 18)}}的其他基金
Advanced bio-inspired adhesive materials
先进仿生粘合材料
- 批准号:
RGPIN-2017-04464 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advanced bio-inspired adhesive materials
先进仿生粘合材料
- 批准号:
RGPIN-2017-04464 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advanced bio-inspired adhesive materials
先进仿生粘合材料
- 批准号:
RGPIN-2017-04464 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advanced bio-inspired adhesive materials
先进仿生粘合材料
- 批准号:
RGPIN-2017-04464 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Contact biomechanics, adhesion and friction of human skin
人体皮肤的接触生物力学、粘附力和摩擦力
- 批准号:
521756-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Advanced bio-inspired adhesive materials
先进仿生粘合材料
- 批准号:
RGPIN-2017-04464 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Projects
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
- 批准号:
2329856 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
- 批准号:
2344366 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2422277 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant