New Directions in Robotic Environmental Monitoring via Machine Learning
通过机器学习实现机器人环境监测的新方向
基本信息
- 批准号:RGPIN-2019-06919
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
What is preventing robotic environmental monitoring of Canadian landscapes from becoming automated? The answer is twofold. First, there are challenges in hardware robustness, such as operation in adverse environmental conditions. Second, and most crucial, robots are oblivious to the type of data that environmental scientists really need. They do not know where to direct their attention. My overarching goal is to address the latter set of challenges with little supervision from and interaction with humans.******This research will develop perception, inference, and control algorithms to address challenging robotics problems in informed visual exploration. The main application domain is the automation of environmental monitoring by robots operating outdoors, building on my past work in this area. The main users of the technology are environmental scientists. The core algorithms developed will be directly applicable to a vast array of human-robot interaction scenarios, and will span three key directions:******(D1) Data-Efficient Learning of Robot Visual Attention with User Specifications: we will develop methods that efficiently learn what visual content in an image matters to the user. Predictive models of visual attention will be learned from a small number of labeled and a large number of unlabeled images. They will enable robots to perform informed visual exploration tailored to the user's preferences. We will also develop connections with reward learning and inverse reinforcement learning over images. This is a key enabling factor for human-robot interaction, which despite years of progress in low-dimensional settings, still lacks robust practical methods in high dimensions. ******(D2) Online Visual Exploration Strategies for Robots via Uncertainty in Visual Attention: we will estimate the model (epistemic) uncertainty of visual attention models, going beyond mere learning of a single probabilistic model. This will enable online, information gathering behaviors from the robot. It will also enable active selection of only a few images that the user needs to label in (D1). Most importantly, however, it will pave the way for the development of uncertainty-aware visual exploration strategies in 3D.******(D3) Collaborative Human Multi-Robot Visual Exploration for Environmental Monitoring: we will design methods to enable a team of robots and a human to visually explore an unknown environment in tandem. This will allow robots of different capabilities to explore collaboratively, without constantly having to see where the human is, by making informed short-term and long-term predictions about his/her location, intent, and preferences. After exploring on their own, robots will need to relocate their human collaborator to redirect his/her attention towards any interesting observations.******This research is unique in jointly addressing these challenges with a human in the loop. The techniques proposed herein will be validated on ground and aerial robots operating outdoors.
是什么阻止了加拿大景观的机器人环境监测自动化?答案是双重的。首先,在硬件鲁棒性方面存在挑战,例如在不利环境条件下的操作。其次,也是最关键的一点,机器人对环境科学家真正需要的数据类型一无所知。他们不知道该把注意力放在哪里。我的首要目标是在几乎没有人类监督和互动的情况下解决后一组挑战。这项研究将开发感知,推理和控制算法,以解决具有挑战性的机器人问题,在知情的视觉探索。主要的应用领域是通过户外操作的机器人实现环境监测的自动化,这是基于我过去在这一领域的工作。该技术的主要用户是环境科学家。开发的核心算法将直接适用于大量的人机交互场景,并将跨越三个关键方向:**(D1)用户规范下机器人视觉注意力的数据有效学习:我们将开发有效学习图像中哪些视觉内容对用户重要的方法。视觉注意力的预测模型将从少量已标记图像和大量未标记图像中学习。它们将使机器人能够根据用户的偏好进行明智的视觉探索。我们还将开发与图像上的奖励学习和反向强化学习的联系。这是人机交互的一个关键因素,尽管在低维环境中取得了多年的进展,但在高维环境中仍然缺乏强大的实用方法。**(D2)通过视觉注意力的不确定性为机器人提供在线视觉探索策略:我们将估计视觉注意力模型的模型(认知)不确定性,不仅仅是学习单个概率模型。这将使机器人能够在线收集信息。它还将使得能够仅主动选择用户需要在(D1)中标记的少数图像。然而,最重要的是,它将为3D中不确定性感知视觉探索策略的发展铺平道路。(D3)协作人类多机器人视觉探索环境监测:我们将设计方法,使一组机器人和一个人视觉探索一个未知的环境串联。这将允许不同能力的机器人通过对人类的位置、意图和偏好进行明智的短期和长期预测来进行协作探索,而无需不断地看到人类在哪里。在自己探索之后,机器人将需要重新定位他们的人类合作者,以将他/她的注意力转移到任何有趣的观察上。这项研究在与人类共同应对这些挑战方面是独一无二的。本文提出的技术将在户外操作的地面和空中机器人上进行验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shkurti, Florian其他文献
Shkurti, Florian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shkurti, Florian', 18)}}的其他基金
New Directions in Robotic Environmental Monitoring via Machine Learning
通过机器学习实现机器人环境监测的新方向
- 批准号:
RGPIN-2019-06919 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Robotic Environmental Monitoring via Machine Learning
通过机器学习实现机器人环境监测的新方向
- 批准号:
RGPIN-2019-06919 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Autonomous Robots for Scientific Monitoring of Marine Environments
用于科学监测海洋环境的自主机器人
- 批准号:
RTI-2021-00722 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Research Tools and Instruments
New Directions in Robotic Environmental Monitoring via Machine Learning
通过机器学习实现机器人环境监测的新方向
- 批准号:
RGPIN-2019-06919 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Robotic Environmental Monitoring via Machine Learning
通过机器学习实现机器人环境监测的新方向
- 批准号:
DGECR-2019-00406 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Launch Supplement
Vision-based perception and planning algorithms for computational robot photographers
适用于计算机器人摄影师的基于视觉的感知和规划算法
- 批准号:
460041-2014 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Vision-based perception and planning algorithms for computational robot photographers
适用于计算机器人摄影师的基于视觉的感知和规划算法
- 批准号:
460041-2014 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Integrating instant messaging into drproject
将即时消息集成到 drproject 中
- 批准号:
382749-2009 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
University Undergraduate Student Research Awards
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant