A statistical framework for the evaluation and comparison of complex networks and its application to microbiome research
复杂网络评估和比较的统计框架及其在微生物组研究中的应用
基本信息
- 批准号:RGPIN-2015-05219
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last decade, advances in sequencing technologies have generated an enormous volume of sequences from a myriad of organisms including both prokaryotes and eukaryotes, and have done so with continuous cost reduction and increased numbers and lengths of sequence reads. In addition, metagenomics is currently providing an unprecedented richness of DNA sequences directly from environmental or tissue samples that can be used to describe in detail the enormous diversity of biological systems using complex networks. ***Networks generally refer to mathematical graph-based representations of a set of discrete entities and their interactions in multidimensional space. Networks are useful conceptual tools for analyzing biological systems and the complex relationships among their constituents; they can be applied to genomic and metagenomic data in which individual entities (nodes) can be represented by sequences, individuals, species, geographic locations, or any combination of such levels of organization. The links (edges) connecting such nodes can represent phylogenetic distances, genetic and functional similarities, or geographic distances. How to extract useful information from such networks is a question of acute interest for researchers. Yet we lack a proper statistical framework to identify and compare these networks.***The goal of this proposal is two fold: First, I will develop a series of statistical and graph-theoretical methods to efficiently analyze large genomic and metagenomic datasets using network-based approaches. Second, I will apply such techniques to characterize and compare networks generated in a variety of microbiome projects. Namely, the proposal is broken down in five activities. In activity 1, I will develop a statistical framework to evaluate networks based on a new categorical formulation of path length distributions. In activity 2, I will develop new metrics to compare networks based on graph motifs and a statistical procedure for doing so. In activity 3, I will apply these new tools to assess the risk of emerging diseases in bats by comparing virome and microbiome networks. In activity 4, I will apply the same techniques to evaluate the link between the skin microbiome and mycobiome in bat species affected by the white nose syndrome. In activity 5, I will study the skin microbiome of a threatened salamander species to measure the impact of hybridization events in sympatric and allopatric populations affected by chytridiomycosis. **
在过去的十年中,测序技术的进步已经从包括原核生物和真核生物的无数生物体产生了大量的序列,并且已经以持续的成本降低和增加的序列读数的数量和长度来实现。此外,宏基因组学目前正在直接从环境或组织样本中提供前所未有的丰富DNA序列,可用于使用复杂网络详细描述生物系统的巨大多样性。*** 网络通常是指多维空间中一组离散实体及其相互作用的数学图形表示。网络是分析生物系统及其组成部分之间复杂关系的有用概念工具;它们可以应用于基因组和宏基因组数据,其中单个实体(节点)可以由序列,个体,物种,地理位置或任何组合表示。连接这些节点的链接(边)可以表示系统发育距离,遗传和功能相似性或地理距离。如何从这样的网络中提取有用的信息是研究人员非常感兴趣的问题。然而,我们缺乏适当的统计框架来识别和比较这些网络。*该提案的目标有两个方面:首先,我将开发一系列统计和图论方法,以使用基于网络的方法有效地分析大型基因组和宏基因组数据集。其次,我将应用这些技术来表征和比较各种微生物组项目中生成的网络。也就是说,该提案分为五项活动。在活动1中,我将开发一个统计框架,以评估基于路径长度分布的新分类公式的网络。在活动2中,我将开发新的度量标准来比较基于图基元的网络,并为此开发一个统计程序。在活动3中,我将应用这些新工具,通过比较病毒组和微生物组网络来评估蝙蝠中新出现疾病的风险。在活动4中,我将应用相同的技术来评估受白色鼻综合征影响的蝙蝠物种的皮肤微生物组和真菌组之间的联系。在活动5中,我将研究受威胁的蝾螈物种的皮肤微生物组,以测量受壶菌病影响的同域和异域种群中杂交事件的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lapointe, FrançoisJoseph其他文献
Lapointe, FrançoisJoseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lapointe, FrançoisJoseph', 18)}}的其他基金
Statistical analysis of microbiome longitudinal data with multiplex networks
利用多重网络对微生物组纵向数据进行统计分析
- 批准号:
RGPIN-2021-03120 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Statistical analysis of microbiome longitudinal data with multiplex networks
利用多重网络对微生物组纵向数据进行统计分析
- 批准号:
RGPIN-2021-03120 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A statistical framework for the evaluation and comparison of complex networks and its application to microbiome research
复杂网络评估和比较的统计框架及其在微生物组研究中的应用
- 批准号:
RGPIN-2015-05219 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A statistical framework for the evaluation and comparison of complex networks and its application to microbiome research
复杂网络评估和比较的统计框架及其在微生物组研究中的应用
- 批准号:
RGPIN-2015-05219 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A statistical framework for the evaluation and comparison of complex networks and its application to microbiome research
复杂网络评估和比较的统计框架及其在微生物组研究中的应用
- 批准号:
RGPIN-2015-05219 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
A statistical framework for the evaluation and comparison of complex networks and its application to microbiome research
复杂网络评估和比较的统计框架及其在微生物组研究中的应用
- 批准号:
RGPIN-2015-05219 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Statistical assessment of complex and large networks derived from (meta)genomic data
对源自(元)基因组数据的复杂大型网络进行统计评估
- 批准号:
RGPIN-2014-04512 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Seeing the (super)trees through the phlogenomic forest
透过植物森林看到(超级)树木
- 批准号:
155251-2009 - 财政年份:2010
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Seeing the (super)trees through the phlogenomic forest
透过植物森林看到(超级)树木
- 批准号:
155251-2009 - 财政年份:2009
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Supertrees and splitstrees in phylogenetic and phylogeographic studies
系统发育和系统地理学研究中的超级树和分裂树
- 批准号:
155251-2004 - 财政年份:2008
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Optimizing the use of noninvasive respiratory support in the Emergency Department
优化急诊科无创呼吸支持的使用
- 批准号:
10591839 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Comprehensive Pediatric Phenotyping for Evidence-Based Diagnosis in Genetic Disease
用于遗传病循证诊断的综合儿科表型分析
- 批准号:
10644205 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Revealing and Resolving Institutional Racism in the NICU
揭示并解决新生儿重症监护病房中的制度性种族主义
- 批准号:
10743828 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Racial Inequities in Opioid Overdose Prevention: The role of local context in the effectiveness of state-level overdose prevention policies
阿片类药物过量预防中的种族不平等:当地环境在州级过量预防政策有效性中的作用
- 批准号:
10641173 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别: