Optimizing Future Mobility Systems
优化未来移动系统
基本信息
- 批准号:RGPIN-2017-03962
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research program is to investigate optimization problems arising in the modeling, design, and operation of future mobility systems, which entails several challenges mainly related to the scale of the underlying problems. On the modeling side, the challenge is in developing models that integrate a plurality of factors such as weather conditions and energy prices along with the underlying uncertainty. On the methodological side, the challenge is in developing large scale optimization techniques that can handle the scale and the uncertainty of the problems.******Future Mobility Systems: New innovations in connected vehicles, hybrid and electric vehicles, and autonomous vehicles which currently have small penetration in the market are expected to become more mainstream in the near future. These new technologies will enable cheaper and more sustainable transportation of goods and people. Furthermore, the market is transforming from the traditional private vehicle ownership to mobility-as-a-service, where private vehicle ownership co-exists with shared vehicle services. Such systems entail the solution of several challenging data driven optimization models to ultimately operate an efficient and sustainable mobility system.******Data Driven Models: For most people, travel patterns are the same every day, such as traveling from home to work. By looking at the data generated from different sources, data driven models can learn the travel patterns of each individual and thus create a system that sees where people are, examines in which direction they are moving, then predicts where they will go. Furthermore, by taking into account traffic and energy prices predictions, the routing of hybrid and electric vehicles can be performed in such a way to minimize the cost of travel and the impact on the environment. For instance, in the case of hybrid vehicles, the usage of the electric engine and the combustion engine can be scheduled in such a way to limit the release of green-house gas in locations with high concentration of people. ******Large Scale Distributed Optimization: The efficient scheduling of electric energy usage to reduce the impact on the environment, along with the routing and the scheduling of trips, should be done on a system-wide approach. The optimization models that will be developed are thus essentially large scale optimization models that are computationally challenging to solve. The proposed research program will investigate new techniques for scalable large scale optimization which would require a deeper understanding of the underlying structure of the optimization problems. The optimization approaches that will be investigated include decomposition, column generation, and cutting planes along with a distributed implementation that makes the proposed solution methods scalable for real life deployment on a cloud platform.
这项研究计划的目的是研究未来移动系统的建模、设计和运行中出现的优化问题,这带来了几个主要与潜在问题的规模有关的挑战。在建模方面,挑战在于开发综合了天气条件、能源价格等多种因素以及潜在不确定性的模型。在方法论方面,挑战在于开发能够处理问题的规模和不确定性的大规模优化技术。*未来移动系统:联网汽车、混合动力汽车和电动汽车以及目前在市场上渗透率较小的自动驾驶汽车的新创新预计将在不久的将来成为主流。这些新技术将使货物和人员的运输变得更便宜、更可持续。此外,市场正在从传统的私家车拥有向移动即服务转型,其中私家车拥有与共享汽车服务共存。这样的系统需要解决几个具有挑战性的数据驱动优化模型,以最终运行高效和可持续的移动系统。*数据驱动模型:对于大多数人来说,每天的出行模式都是相同的,比如从家到公司的旅行。通过查看来自不同来源的数据,数据驱动模型可以了解每个人的出行模式,从而创建一个系统,该系统可以看到人们在哪里,检查他们正朝哪个方向移动,然后预测他们将去哪里。此外,通过考虑交通和能源价格预测,混合动力和电动汽车的路线选择可以这样一种方式进行,以最大限度地减少旅行成本和对环境的影响。例如,在混合动力汽车的情况下,电动发动机和内燃机的使用可以通过这样的方式进行调度,以限制在人员高度集中的地点排放温室气体。*大规模分布式优化:电力使用的有效调度以减少对环境的影响,以及TRIPS的路线和调度,应该在全系统范围内进行。因此,将要开发的优化模型本质上是大规模的优化模型,在计算上具有挑战性。拟议的研究计划将研究可伸缩大规模优化的新技术,这将需要对优化问题的基本结构有更深的理解。将研究的优化方法包括分解、列生成和切割平面,以及分布式实施,该实施使建议的解决方案方法可扩展以用于云平台上的实际部署。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NaoumSawaya, Joe其他文献
NaoumSawaya, Joe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NaoumSawaya, Joe', 18)}}的其他基金
Optimizing Future Mobility Systems
优化未来移动系统
- 批准号:
RGPIN-2017-03962 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Future Mobility Systems
优化未来移动系统
- 批准号:
RGPIN-2017-03962 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Future Mobility Systems
优化未来移动系统
- 批准号:
RGPIN-2017-03962 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Future Mobility Systems
优化未来移动系统
- 批准号:
RGPIN-2017-03962 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Optimizing Future Mobility Systems
优化未来移动系统
- 批准号:
RGPIN-2017-03962 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization Methods for Non-linear Integer Programming and Applications
非线性整数规划的大规模优化方法及应用
- 批准号:
404135-2011 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Postdoctoral Fellowships
Large Scale Optimization Methods for Non-linear Integer Programming and Applications
非线性整数规划的大规模优化方法及应用
- 批准号:
404135-2011 - 财政年份:2011
- 资助金额:
$ 1.89万 - 项目类别:
Postdoctoral Fellowships
Large Scale Robust Optimization Applied to Ambulance Deployment and Telecommunication Network Planning Problems
大规模鲁棒优化应用于救护车部署和电信网络规划问题
- 批准号:
379471-2009 - 财政年份:2010
- 资助金额:
$ 1.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interior point branch-and-cut methods for large scale integer programming
大规模整数规划的内点分支割法
- 批准号:
387379-2009 - 财政年份:2009
- 资助金额:
$ 1.89万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Large Scale Robust Optimization Applied to Ambulance Deployment and Telecommunication Network Planning Problems
大规模鲁棒优化应用于救护车部署和电信网络规划问题
- 批准号:
379471-2009 - 财政年份:2009
- 资助金额:
$ 1.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似海外基金
Future Leaders for Advanced Air Mobility Excellence (FLAME)
先进空中交通卓越的未来领导者 (FLAME)
- 批准号:
10063769 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative R&D
ISCF_FFC/CPC Future of Air Mobility Accelerator 3
ISCF_FFC/CPC 空中交通加速器 3 的未来
- 批准号:
161024 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative R&D
Public Outreach to inform how Mobility Data is being used in Public Health: Past, Pandemic, and Future.
公共宣传,告知如何在公共卫生领域使用移动数据:过去、流行病和未来。
- 批准号:
485629 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Miscellaneous Programs
Developing Simulation Frontiers for Future Urban Air Mobility Safety Investigation
为未来城市空中交通安全研究开发模拟前沿
- 批准号:
2865078 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
Advanced Battery Research for a Future with Sustainable Energy, Mobility, and Water
先进电池研究,打造可持续能源、交通和水的未来
- 批准号:
RGPIN-2021-02383 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: IRES Track I: Future Mobility for Smart City
合作研究:IRES 第一轨:智慧城市的未来移动性
- 批准号:
2236524 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
DynaMix-FM, dynamic mixed reality environment for future mobility
DynaMix-FM,面向未来移动的动态混合现实环境
- 批准号:
LE220100025 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Modernising Aircraft for Future Mobility
现代化飞机以适应未来移动性
- 批准号:
10046772 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Grant for R&D
Auditory User Interface Design for Future Mobility
面向未来移动性的听觉用户界面设计
- 批准号:
22H03889 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ISCF-FFC/CPC Future of Air Mobility Accelerator 2
ISCF-FFC/CPC 空中交通加速器的未来 2
- 批准号:
160103 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative R&D














{{item.name}}会员




