Dynamic response of multi scale periodic materials and structures
多尺度周期性材料和结构的动态响应
基本信息
- 批准号:RGPIN-2014-04304
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern structural materials are designed to achieve high stiffness, strength, toughness and damping with minimum weight to build efficient structural components used in manufacturing (moving machine tool structures) and transportation (sandwich panels in naval, aerospace and automotive industries). Combining two or more materials fulfils the conflicting material property requirements by creating a new hybrid material with properties superior to those of its parent materials. Composite materials using particles or fibres in a background matrix medium are illustrative of hybridization at the material level. Engineering application of these lightweight materials can be further enhanced, at the structural level, by extending the same idea of hybridization, embodied in sandwich construction using a core material bonded between two face sheet materials. The above two engineering practices lead to the question: can one design hybrid materials by borrowing examples from structural construction utilizing size, scale, and shape? The quest to answer this question has first lead to the development of metal and polymeric foams and more recently lattice materials. These new class of periodic materials are being developed to fulfil not only the structural efficiency requirements of high specific stiffness and strength, but also other functional requirements such as favourable thermal and vibro-acoustic response. Recent developments in manufacturing technologies such as rapid prototyping, 3-D printing, soft lithography have invigorated research to design multifunctional structural materials. Given the lack of stiffness of foams due to their random micro-architecture, attention has now turned onto materials with periodic microstructure. Emerging manufacturing techniques not only offer the ability to combine two materials but also control the shape (micro-architecture) and length scale leading to the creation of innovative materials, structures, and devices.**The ability to control wave and acoustic response by designing periodic microarchitecture has led to the emergence a new class of periodic composite materials with promising vibroacoustic and dynamic response characteristics. Whereas periodicity is engineered in mesoscale periodic materials, periodicity is intrinsic to nanomaterials such as Single Layer Graphene (SLG) and Carbon Nanotubes (CNT), wherein carbon atoms are arranged in a hexagonal lattice. At both scales the presence of defects and sources of nonlienarity are unavoidable. While interatomic potentials are the sources of nonlinearity in SLGs and CNTs, geometric and material nonlinearities are relevant to micro truss lattice materials. The proposed research will study linear and nonlinear dynamic response of micro and nanoscale periodic materials particularly in the presence of defects and dissipation mechanisms. **The proposed research is concerned with dynamic response of multiscale periodic materials and structures. The long-term goal of this research, combining theory and experiments, is to understand the influence of microstructural scale, shape, and size on effective mechanical properties, vibro-acoustic, and wave propagation response of periodic materials. The research will focus on periodic materials at mesoscale in the short-term. Fundamental knowledge generated will be exploited to design multifunctional structures and devices for applications in manufacturing, aerospace, and biomedical industries. Such wide-ranging applications are possible due to the basic building-blocks approach pursued. This research program will train four graduate students (2 PhDs and 2 MAScs) over the next five years in this emerging area of interest to global research community and Canadian aerospace and manufacturing industries.
现代结构材料被设计成以最小的重量实现高刚度、强度、韧性和阻尼,以构建用于制造(移动机床结构)和运输(海军、航空航天和汽车工业中的夹层板)的高效结构部件。 将两种或更多种材料组合,通过创建具有上级其母体材料的性能的新混合材料来满足相互冲突的材料性能要求。在背景基质介质中使用颗粒或纤维的复合材料说明了材料水平上的杂化。这些轻质材料的工程应用可以在结构水平上进一步增强,通过扩展混合的相同思想,体现在使用在两个面板材料之间粘合的芯材料的夹层结构中。上述两种工程实践引出了一个问题:能否通过借用结构建筑的例子,利用尺寸、尺度和形状来设计混合材料?为了回答这个问题,首先开发了金属和聚合物泡沫,最近又开发了晶格材料。正在开发这些新的周期性材料类别,以不仅满足高比刚度和强度的结构效率要求,而且满足其他功能要求,例如有利的热响应和振动声学响应。近年来,快速成型技术、3D打印技术、软光刻技术等制造技术的发展促进了多功能结构材料的研究。由于泡沫材料的随机微结构导致其刚度不足,现在人们的注意力已经转向具有周期性微结构的材料。新兴的制造技术不仅提供了将两种材料联合收割机结合的能力,而且还控制了形状(微结构)和长度尺度,从而创造出创新的材料、结构和设备。通过设计周期性微结构来控制波和声响应的能力导致了一类新的周期性复合材料的出现,其具有有前途的振动声学和动态响应特性。尽管周期性在介观周期性材料中被设计,但周期性是纳米材料如单层石墨烯(SLG)和碳纳米管(CNT)固有的,其中碳原子以六方晶格排列。在这两个尺度上,缺陷和非线性源的存在是不可避免的。虽然原子间势是SLG和CNT中的非线性的来源,但几何和材料非线性与微桁架晶格材料相关。该研究将研究微纳米周期性材料的线性和非线性动态响应,特别是在缺陷和耗散机制的存在下。** 所提出的研究涉及多尺度周期性材料和结构的动态响应。本研究的长期目标,理论和实验相结合,是了解微结构的规模,形状和尺寸对有效的机械性能,振动声学,和周期性材料的波传播响应的影响。短期内将集中研究中尺度的周期性材料。产生的基础知识将被利用来设计多功能结构和设备,用于制造业,航空航天和生物医学行业。由于采用了基本的积木式方法,这种广泛的应用是可能的。 该研究计划将在未来五年内培养四名研究生(2名博士和2名硕士),这是全球研究界和加拿大航空航天和制造业感兴趣的新兴领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phani, Srikantha其他文献
Phani, Srikantha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phani, Srikantha', 18)}}的其他基金
Mechanics of Structured Materials
结构材料力学
- 批准号:
RGPIN-2020-06431 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Mechanics of Structured Materials
结构材料力学
- 批准号:
RGPIN-2020-06431 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Mechanics of Structured Materials
结构材料力学
- 批准号:
RGPIN-2020-06431 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Mechanics of tissue making: modelling and experiments
组织制造的力学:建模和实验
- 批准号:
536508-2018 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Mechanics of tissue making: modelling and experiments
组织制造的力学:建模和实验
- 批准号:
536508-2018 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Dynamic response of multi scale periodic materials and structures
多尺度周期性材料和结构的动态响应
- 批准号:
RGPIN-2014-04304 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Stability analysis and design of on-board rail-wheel solid stick friction management systems
车载轨轮固体棒摩擦管理系统稳定性分析与设计
- 批准号:
453058-2013 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Mechanics of creping: modeling and experiments
起皱机理:建模和实验
- 批准号:
501467-2016 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Dynamic response of multi scale periodic materials and structures
多尺度周期性材料和结构的动态响应
- 批准号:
RGPIN-2014-04304 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Dynamic response of multi scale periodic materials and structures
多尺度周期性材料和结构的动态响应
- 批准号:
RGPIN-2014-04304 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
RIPK3蛋白及其RHIM结构域在脓毒症早期炎症反应和脏器损伤中的作用和机制研究
- 批准号:82372167
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
YTHDF1通过m6A修饰调控耳蜗毛细胞炎症反应在老年性聋中的作用机制研究
- 批准号:82371140
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于FCER1G基因介导免疫反应探讨迟发性聋与认知障碍相关性的机制研究
- 批准号:82371141
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
cGAS-STING激活IFN1反应介导噪声性耳蜗损伤机制研究
- 批准号:82371152
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PKM2调控CHIP-HSP70-BAG3复合体介导的错误折叠蛋白聚集和清除的分子机制及其在肿瘤靶向治疗中的意义
- 批准号:32000533
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
长期内质网应激产生原朊病毒蛋白抵抗胰腺癌细胞凋亡的分子机制
- 批准号:32000535
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
拟南芥辅助共激活因子ADA2b与染色质相关因子ADIP1互作参与DNA损伤响应的机制研究
- 批准号:32000493
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
生长素响应因子(Auxin Response Factors)在拟南芥雄配子发育中的功能研究
- 批准号:31970520
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
组蛋白去乙酰化酶 1 调控线粒体未折叠蛋白反应的分子机制及对衰老相关疾病的应用
- 批准号:31900544
- 批准年份:2019
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
新型GhDRP1(Drought Response Protein1) 调控棉花应答干旱的分子网络解析及育种利用评价
- 批准号:31871668
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
High-Intensity, dynamic-stability gait training in people with multiple sclerosis
多发性硬化症患者的高强度、动态稳定性步态训练
- 批准号:
10530019 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
High-Intensity, dynamic-stability gait training in people with multiple sclerosis
多发性硬化症患者的高强度、动态稳定性步态训练
- 批准号:
10705292 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
- 批准号:
10469496 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
MusIC: A multi-scale technology for integrating dynamic cellular function and molecular profiles
MusIC:整合动态细胞功能和分子谱的多尺度技术
- 批准号:
10491797 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
- 批准号:
10667580 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
MusIC: A multi-scale technology for integrating dynamic cellular function and molecular profiles
MusIC:整合动态细胞功能和分子谱的多尺度技术
- 批准号:
10275702 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
MusIC: A multi-scale technology for integrating dynamic cellular function and molecular profiles
MusIC:整合动态细胞功能和分子谱的多尺度技术
- 批准号:
10710176 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Multi-scale analysis of the photocurrent response and dynamic properties of antiferromagnets
反铁磁体光电流响应和动态特性的多尺度分析
- 批准号:
21J00453 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Predictive Modeling Framework to Dissect the Dynamic Immunometabolic Responses to Pathogenic infection and the Kinetic Reprogramming of Metabolism in Cancer Cell System
剖析对病原体感染的动态免疫代谢反应和癌细胞系统代谢的动力学重编程的预测模型框架
- 批准号:
10276617 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Dynamic response of multi scale periodic materials and structures
多尺度周期性材料和结构的动态响应
- 批准号:
RGPIN-2014-04304 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual