PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment

PBTK 建模和模拟框架,用于确定高效且有效的儿科风险评估的关键数据要求

基本信息

  • 批准号:
    RGPIN-2017-05056
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Environmental contaminant exposure is an escalating concern and assessing the human risks associated with such exposure continues to be an inexact science. Risks are largely based upon the extrapolation of exposure and effect in animals to those in humans. Extrapolation customarily takes a simplistic form, wherein a threshold dose derived from animal studies is divided by adjustment factors (AFs) to account for interspecies and human population variability in toxicokinetics (TK) and toxicodynamics. One promising method to refine default AFs is based on physiologically based toxicokinetic (PBTK) models. These mathematical models facilitate the understanding of how exposure to a compound, or ingested dose, translates into systemic (plasma) and target (organ) exposure and are based on the interplay between organism physiology, compound physicochemistry and biochemical processes. ******Due to immaturity, children represent a potentially susceptible population to contaminant exposure and they may, or may not, be adequately covered using default AFs. There is however a considerable data burden for predictive pediatric PBTK modeling that may lead to an inability to use this method for AF refinement without further research. There have been no efforts to define what compound-specific data requirements are critical for accurate pediatric dosimetry estimation. The objective of this program is to develop a PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment. The framework would aim to minimize data burden while maximizing confidence in outcomes.******The program will focus on developing or further extending mechanistic inhalation and oral absorption models to be life-stage appropriate. Further, pediatric PBTK models using a wide range of hypothetical compounds will be developed and, with the aid of local and global sensitivity analysis methods, offer a means to examine those critical data inputs that are relied upon to generate accurate pediatric exposures. Further, real data that would be used for model development during a risk assessment will be located in literature or experimentally derived. Complete and reduced datasets will be used for model development and this will provide for both a confirmation of those data pieces that are critical for a particular scenario as highlighted previously and an assessment of the impact on prediction accuracy when less critical data pieces are unavailable.******The framework will allow industry to target experimentation for newly identified contaminants to only those data requirements that will be important for achieving acceptable pediatric exposure prediction. Acceptable predictions will reduce the probability of setting limits that are either too high, which will put pediatric health at risk, or too low, which is overprotective and presents challenges to risk managers. *****
环境污染物暴露是一个日益令人关切的问题,评估与这种暴露相关的人类风险仍然是一门不精确的科学。风险在很大程度上是基于对动物的暴露和影响与人类的接触和影响的推断。外推通常采取一种简单的形式,即从动物研究中得出的阈值剂量除以调整因子(AFs),以考虑毒物动力学(TK)和毒物动力学(TK)中的物种间和人类种群变异性。一种很有前途的方法是基于生理毒代动力学(PBTK)模型来精炼缺省AFS。这些数学模型有助于理解接触化合物或摄入剂量如何转化为全身(血浆)和靶(器官)暴露,并基于生物体生理、化合物物理化学和生化过程之间的相互作用。*由于不成熟,儿童是接触污染物的潜在易感人群,他们可能会,也可能不会使用默认的AFS得到充分的覆盖。然而,儿童预测PBTK模型有相当大的数据负担,这可能导致在没有进一步研究的情况下无法使用该方法进行房颤精细化。目前还没有努力确定哪些化合物特定的数据要求是准确的儿科剂量估算的关键。该计划的目标是开发PBTK建模和模拟框架,以确定有效和有效的儿科风险评估的关键数据需求。该框架旨在最大限度地减少数据负担,同时最大限度地提高对结果的信心。*该计划将专注于开发或进一步推广适合生命阶段的机械性吸入和口服吸收模型。此外,将开发使用各种假设化合物的儿科PBTK模型,并借助局部和全球敏感性分析方法,提供一种检查那些关键数据输入的手段,这些数据输入是产生准确的儿科暴露的依据。此外,将在风险评估期间用于模型开发的真实数据将位于文献中或通过实验得出。完整和精简的数据集将用于模型开发,这将提供对前面强调的特定情景至关重要的数据片段的确认,以及当不太关键的数据片段不可用时对预测准确性的影响的评估。*该框架将允许行业将新发现的污染物的实验目标定为对实现可接受的儿科暴露预测至关重要的那些数据要求。可接受的预测将减少设定过高或过低限制的可能性,前者将使儿科健康处于危险之中,后者过度保护,并给风险管理者带来挑战。*****

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edginton, Andrea其他文献

Routine clinical care data for population pharmacokinetic modeling: the case for Fanhdi/Alphanate in hemophilia A patients
A Blended Learning Approach to Teaching Basic Pharmacokinetics and the Significance of Face-to-Face Interaction
Parameterization of small intestinal water volume using PBPK modeling
  • DOI:
    10.1016/j.ejps.2014.10.016
  • 发表时间:
    2015-01-25
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Maharaj, Anil;Fotaki, Nikoletta;Edginton, Andrea
  • 通讯作者:
    Edginton, Andrea
A Mechanistic Bayesian Inferential Workflow for Estimation of In Vivo Skin Permeation from In Vitro Measurements
  • DOI:
    10.1016/j.xphs.2021.11.028
  • 发表时间:
    2022-03-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hamadeh, Abdullah;Troutman, John;Edginton, Andrea
  • 通讯作者:
    Edginton, Andrea
Effects of acepromazine or dexmedetomidine on fentanyl disposition in dogs during recovery from isoflurane anesthesia
  • DOI:
    10.1111/vaa.12271
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Keating, Stephanie;Kerr, Carolyn;Edginton, Andrea
  • 通讯作者:
    Edginton, Andrea

Edginton, Andrea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edginton, Andrea', 18)}}的其他基金

PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment
PBTK 建模和模拟框架,用于确定高效且有效的儿科风险评估的关键数据要求
  • 批准号:
    RGPIN-2017-05056
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment
PBTK 建模和模拟框架,用于确定高效且有效的儿科风险评估的关键数据要求
  • 批准号:
    RGPIN-2017-05056
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment
PBTK 建模和模拟框架,用于确定高效且有效的儿科风险评估的关键数据要求
  • 批准号:
    RGPIN-2017-05056
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
PBTK modeling and simulation framework to identify critical data requirements for efficient and effective pediatric risk assessment
PBTK 建模和模拟框架,用于确定高效且有效的儿科风险评估的关键数据要求
  • 批准号:
    RGPIN-2017-05056
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of predictive permeability and partitioning models for organic contaminants within physiologically-based toxicokinetic models
基于生理的毒代动力学模型中有机污染物的预测渗透性和分配模型的开发和验证
  • 批准号:
    371792-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of predictive permeability and partitioning models for organic contaminants within physiologically-based toxicokinetic models
基于生理的毒代动力学模型中有机污染物的预测渗透性和分配模型的开发和验证
  • 批准号:
    371792-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of predictive permeability and partitioning models for organic contaminants within physiologically-based toxicokinetic models
基于生理的毒代动力学模型中有机污染物的预测渗透性和分配模型的开发和验证
  • 批准号:
    371792-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of predictive permeability and partitioning models for organic contaminants within physiologically-based toxicokinetic models
基于生理的毒代动力学模型中有机污染物的预测渗透性和分配模型的开发和验证
  • 批准号:
    371792-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of predictive permeability and partitioning models for organic contaminants within physiologically-based toxicokinetic models
基于生理的毒代动力学模型中有机污染物的预测渗透性和分配模型的开发和验证
  • 批准号:
    371792-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Correlating gene expression with biochemical responses in Xenopus tropicalis to chemicals that modulate thyroid hormone function
将基因表达与热带爪蟾对调节甲状腺激素功能的化学物质的生化反应相关联
  • 批准号:
    305050-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
  • 批准号:
    40972154
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
ABM有效性检验的关键技术研究
  • 批准号:
    70701001
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
三峡库区以流域为单元森林植被对洪水影响研究
  • 批准号:
    30571486
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
  • 批准号:
    2425778
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
  • 批准号:
    2339148
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Integrating Microarchitecture Simulation and Side-Channel Leakage Modeling for Safer Software
职业:集成微架构仿真和侧通道泄漏建模以实现更安全的软件
  • 批准号:
    2338623
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Early-career Participant Support for Additive Manufacturing Modeling, Simulation, and Machine Learning Symposium at MS&T 2023; Columbus, Ohio; October 1- 4, 2023
MS 增材制造建模、仿真和机器学习研讨会的早期职业参与者支持
  • 批准号:
    2334074
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
A modeling approach for accurately predicting land use changes brought by human decisions
准确预测人类决策带来的土地利用变化的建模方法
  • 批准号:
    22KJ1856
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
  • 批准号:
    10556284
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
  • 批准号:
    10555012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了