Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations

细胞生化反应网络理论:理解和利用随机波动

基本信息

  • 批准号:
    RGPIN-2019-06443
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Analyzing stochastic fluctuations to infer underlying interactions of components has a long history in physics. In the life sciences much recent experimental work has focused on measuring non-genetic variability in single cells where stochastic effects significantly affect biochemical processes. As a result, there is an enormous demand for theoretical approaches to analyze and interpret stochastic fluctuations in complex biological systems. Reliably relating the observed cell-to-cell variability to underlying molecular interactions is necessary to understand many key cellular processes shaped by stochastic effects, such as the differentiation of stem cells, the response of cancer cells to drug treatment, and the spread of antibiotic resistance in bacterial populations. ******However, because living systems do not operate at thermodynamic equilibrium we cannot use general relations like the Fluctuation-Dissipation-Theorem and we are forced to study each biological process individually. That means we have to model all interactions between all the components either guessing many unknown details or making sweeping approximations. This approach is unreliable and has led to contradictory answers even when theoretical papers analyze the same experimental data.******The goal of our research is to address this fundamental challenge by establishing universal properties that apply to entire classes of systems without making a large number of explicit or implicit assumptions. Our first thematic focus is to understand the principles of how stochastic fluctuations are generated, transmitted, and eliminated in complex biochemical reactions networks. We will do so by analyzing how different "network motifs" shape the stochastic dynamics of individual components embedded within unspecified reaction networks. For example, we will derive fundamental limits and trade-offs inherent to the dynamics of feed-forward loops, complex formation, and stochastic enzyme-substrate interactions, all embedded within arbitrarily complex regulatory networks.******In our second focus we consider stochastic fluctuations not as a complication to understand biological processes but as an opportunity to extract additional information. To accomplish that we will develop a theoretical framework that exploits naturally occurring stochastic fluctuations as a non-perturbative tool to probe local interactions within large networks. The ultimate success of this framework will be an algorithm that produces a list of suggested mechanisms and molecular reactions based solely on the observed joint probability distributions of components. In addition to developing new theoretical tools we will pursue experimental collaborations and apply our new methods to analyze high-throughput microscopy data from single-cell experiments.
分析随机波动以推断组分的潜在相互作用在物理学中有着悠久的历史。在生命科学中,最近的许多实验工作都集中在测量单细胞中的非遗传变异性,其中随机效应显着影响生化过程。因此,有一个巨大的需求的理论方法来分析和解释复杂的生物系统中的随机波动。将观察到的细胞间变异性与潜在的分子相互作用可靠地联系起来,对于理解由随机效应形成的许多关键细胞过程是必要的,例如干细胞的分化,癌细胞对药物治疗的反应,以及细菌种群中抗生素耐药性的传播。** 然而,由于生命系统不是在热力学平衡下运行的,我们不能使用像涨落耗散定理这样的一般关系,我们被迫单独研究每个生物过程。这意味着我们必须对所有组件之间的所有交互进行建模,要么猜测许多未知的细节,要么进行全面的近似。这种方法是不可靠的,甚至当理论论文分析相同的实验数据时,也会导致矛盾的答案。我们研究的目标是通过建立适用于整个系统类别的普适属性来解决这一根本挑战,而无需进行大量的显式或隐式假设。我们的第一个主题重点是了解随机波动如何在复杂的生化反应网络中产生,传输和消除的原理。我们将通过分析不同的“网络图案”如何塑造嵌入在未指定的反应网络中的单个组件的随机动力学来实现这一点。例如,我们将推导出前馈回路、复合物形成和随机酶-底物相互作用的动力学固有的基本限制和权衡,所有这些都嵌入在任意复杂的调控网络中。在我们的第二个重点,我们认为随机波动不是一个复杂的理解生物过程,但作为一个机会,提取额外的信息。为了实现这一目标,我们将开发一个理论框架,利用自然发生的随机波动作为非微扰工具来探测大型网络中的局部相互作用。该框架的最终成功将是一种算法,该算法仅基于观察到的组分的联合概率分布产生建议的机制和分子反应列表。除了开发新的理论工具,我们还将进行实验合作,并应用我们的新方法来分析来自单细胞实验的高通量显微镜数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hilfinger, Andreas其他文献

How molecular motors shape the flagellar beat
  • DOI:
    10.2976/1.2773861
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riedel-Kruse, Ingmar H.;Hilfinger, Andreas;Juelicher, Frank
  • 通讯作者:
    Juelicher, Frank
Separating intrinsic from extrinsic fluctuations in dynamic biological systems
Nonlinear dynamics of cilia and flagella
  • DOI:
    10.1103/physreve.79.051918
  • 发表时间:
    2009-05-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hilfinger, Andreas;Chattopadhyay, Amit K.;Juelicher, Frank
  • 通讯作者:
    Juelicher, Frank
Exploiting Natural Fluctuations to Identify Kinetic Mechanisms in Sparsely Characterized Systems
  • DOI:
    10.1016/j.cels.2016.04.002
  • 发表时间:
    2016-04-27
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Hilfinger, Andreas;Norman, Thomas M.;Paulsson, Johan
  • 通讯作者:
    Paulsson, Johan

Hilfinger, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hilfinger, Andreas', 18)}}的其他基金

Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    RGPIN-2019-06443
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
  • 批准号:
    DGECR-2019-00215
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
  • 批准号:
    10550045
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Protein Chemistry
蛋白质化学
  • 批准号:
    10552380
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Cellular FM-radios: seeing, probing, and perturbing single-cell protein activity dynamics in biological systems with frequency-barcoded spatiotemporal signaling circuits
细胞调频无线电:利用频率条形码时空信号电路观察、探测和扰动生物系统中的单细胞蛋白质活性动态
  • 批准号:
    10685132
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
  • 批准号:
    10649299
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Biology the initiator: Harnessing Reactive Oxygen Species for Biocompatible Polymerization
生物学引发者:利用活性氧进行生物相容性聚合
  • 批准号:
    10667740
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
  • 批准号:
    10846921
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Oxidative Lipidomics in Pediatric Traumatic Brain Injury
氧化脂质组学在小儿创伤性脑损伤中的应用
  • 批准号:
    10844023
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
2023 Enzymes, Coenzymes and Metabolic Pathways GRC and GRS
2023 酶、辅酶和代谢途径 GRC 和 GRS
  • 批准号:
    10753274
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
  • 批准号:
    10603669
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了