Distributional effects and computational challenges in modern data analysis

现代数据分析中的分布效应和计算挑战

基本信息

  • 批准号:
    RGPIN-2017-06622
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The research agenda described in this proposal has two main threads: procedures for inference in massive data sets and the use of copulas in time series analysis.******With modern data collection techniques, extremely large data sets become more and more prevalent. To extract useful information from such data sets, statistical procedures that can handle large amounts of data and remain computationally feasible need to be developed. This motivates the first research direction: fast bootstrap procedures for massive data sets. The goal of this part of the proposed research is to gain a deep and comprehensive understanding of the limitations associated with bootstrap procedures that are specifically designed for large-scale data sets. This will be achieved by analyzing a wide array of scenarios where the classical bootstrap or modifications thereof are known to be applicable. In cases where the available methods fail, I plan to develop alternative approaches that continue to be applicable. With data sets that are growing at an ever increasing rate, fast and accurate procedures for quantifying uncertainty of statistical procedures are in high demand. My long-term goal is to enable the scientific community to conduct fast and reliable inference for the new type of large and messy data sets that are becoming more and more common in the modern data world. The research described above will provide a first step towards a deep and comprehensive study of such procedures and enable researchers and industry professionals to make full use of the data they collect.******The second main topic of this proposal is the use of copulas in time series analysis. Since the financial crisis, it is well known that correct modeling of complex dependencies among economic variables or financial instruments is extremely important. Copulas provide a simple and elegant way to find and validate such models. ***During the next five years, I aim to extend classical tools from time series analysis to allow visualization and analysis of distributional effects in dynamics of time series by using copulas. To this end I aim to provide the statistical community with a toolbox of methods that are grounded in solid theoretical understanding, well-documented and understandable to the non-technical time series and copula community, and have a fast and reliable implementation in R in order to facilitate the wide-spread use of such methods in a broad community of applied researchers and beyond.
本提案中描述的研究议程有两个主线:海量数据集的推理过程和时间序列分析中copula的使用。******随着现代数据收集技术的发展,超大数据集变得越来越普遍。为了从这些数据集中提取有用的信息,需要开发能够处理大量数据并在计算上仍然可行的统计程序。这激发了第一个研究方向:大规模数据集的快速引导过程。这部分研究的目标是深入而全面地理解专门为大规模数据集设计的bootstrap程序的局限性。这将通过分析一系列已知适用经典自举或其修改的场景来实现。在可用方法失败的情况下,我计划开发继续适用的替代方法。随着数据集的不断增长,对统计程序的不确定性进行量化的快速和准确的程序有很高的需求。我的长期目标是使科学界能够对现代数据世界中越来越普遍的大型和混乱的新型数据集进行快速可靠的推断。上述研究将为深入和全面研究这些程序提供第一步,并使研究人员和行业专业人员能够充分利用他们收集的数据。******本提案的第二个主题是在时间序列分析中使用copula。自金融危机以来,众所周知,对经济变量或金融工具之间复杂依赖关系的正确建模是极其重要的。copula提供了一种简单而优雅的方法来查找和验证这些模型。***在接下来的五年里,我的目标是扩展时间序列分析的经典工具,通过使用copula来可视化和分析时间序列动力学中的分布效应。为此,我的目标是为统计社区提供一个方法工具箱,这些方法建立在坚实的理论理解基础上,对于非技术时间序列和copula社区来说,这些方法具有良好的文档和可理解性,并且在R中具有快速可靠的实现,以便于在广泛的应用研究人员社区中广泛使用这些方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Volgushev, Stanislav其他文献

On the unbiased asymptotic normality of quantile regression with fixed effects
  • DOI:
    10.1016/j.jeconom.2019.12.017
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Galvao, Antonio F.;Gu, Jiaying;Volgushev, Stanislav
  • 通讯作者:
    Volgushev, Stanislav
Non-crossing non-parametric estimates of quantile curves
DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
  • DOI:
    10.1214/18-aos1730
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Volgushev, Stanislav;Chao, Shih-Kang;Cheng, Guang
  • 通讯作者:
    Cheng, Guang
NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE
  • DOI:
    10.1214/11-aos890
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Buecher, Axel;Dette, Holger;Volgushev, Stanislav
  • 通讯作者:
    Volgushev, Stanislav
The effects of works councils on overtime hours
  • DOI:
    10.1111/sjpe.12120
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Gralla, Rafael;Kraft, Kornelius;Volgushev, Stanislav
  • 通讯作者:
    Volgushev, Stanislav

Volgushev, Stanislav的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Volgushev, Stanislav', 18)}}的其他基金

Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Distributional effects and computational challenges in modern data analysis
现代数据分析中的分布效应和计算挑战
  • 批准号:
    RGPIN-2017-06622
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
  • 批准号:
    82371825
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
  • 批准号:
    82371317
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
  • 批准号:
    32371121
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目
动态整体面孔认知加工的认知机制的研究
  • 批准号:
    31070908
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
磁性隧道结的势垒及电极无序效应的研究
  • 批准号:
    10874076
  • 批准年份:
    2008
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
抗抑郁剂调控细胞骨架蛋白的功能研究
  • 批准号:
    30472018
  • 批准年份:
    2004
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bioinformatics Core
生物信息学核心
  • 批准号:
    10404414
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Identifying how alcohol-evoked changes in neural firing affect systems level computations during decision-making
确定酒精引起的神经放电变化如何影响决策过程中的系统级计算
  • 批准号:
    10766877
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Targeting the allosteric sodium site with novel probes for delta opioid receptor
用新型 δ 阿片受体探针靶向变构钠位点
  • 批准号:
    10892532
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
  • 批准号:
    10712290
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Genome-wide characterization of complex variants and their phenotypic effects in African populations
复杂变异的全基因组特征及其在非洲人群中的表型效应
  • 批准号:
    10721811
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Bringing the clinic to the lab: the effects of forced and non-forced rehabilitation on functional recovery after spinal cord injury
将临床带入实验室:强制和非强制康复对脊髓损伤后功能恢复的影响
  • 批准号:
    10641259
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
In-Vivo Patient-Specific Optimization of Transcatheter-Edge-to-Edge Repair in Mitral Regurgitation
二尖瓣反流经导管边对边修复的体内患者特异性优化
  • 批准号:
    10751196
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
A prospective clinical trial of immunosuppression reduction in recipients of low eplet mismatched renal allografts: the kidney for life initiative
低 eplet 错配肾同种异体移植受者减少免疫抑制的前瞻性临床试验:肾脏生命倡议
  • 批准号:
    10704807
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了