Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
基本信息
- 批准号:RGPIN-2014-05340
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 2011 AAPM summer school for medical physicists was on the subject of Uncertainties in External Beam Radiation Therapy. The opening plenary speaker argued that the issues that were most likely to impact patient outcomes were dose calculation accuracy and calibration accuracy because these issues affect every one of a patient's many treatments. The goal of this research program is to improve the dosimetry of radiotherapy delivery by providing accurate research tools for calculating dose distributions from traditional and emerging technologies and by providing new information needed to accurately use different types of radiation dosimeters.**The program consists of four broadly linked areas of research.**For over 25 years the PI has been deeply involved with the development of the EGS system which is used to simulate the transport of radiation through matter. EGSnrc is considered the gold standard for such software. However, with the emergence of combined MRI-radiotherapy systems, it is essential to extend the EGSnrc system to work in the presence of magnetic fields which can have a strong influence both on the dose delivered and on some of the instruments used to measure it. Other improvements to be made will maintain the code's accuracy and significantly increase its efficiency. Measurements will be made in collaboration with the standards lab at NRC to verify the accuracy of the calculations. These improvements will be made available to researchers around the world so they may independently verify the new MRI-therapy systems and more efficiently study many other problems.**The second research area is the calculation of correction factors for ion chambers which are used to measure the dose in radiation therapy treatments. Values recently calculated by the PI's group for use in linac photon beams have been recommended for clinical use throughout North America. In this program, calculations and measurements will be done for the more complex case of electron beams and corrections for low-energy x-ray beams will be calculated.**The third research area is to extend our recent work on TLD dosimeters to a wide range of clinical detectors. With the software now available, we are able to much more accurately model detector response and investigate the effects of realistic models of the detectors. Within the conceptual framework popularized by the 2009 AAPM summer school, it is now possible to more clearly characterize detector's response. Our research on TLD detectors showed that there are many subtleties which most clinical physicists were unaware of. The goal is to use Monte Carlo simulations to clarify these types of issues for a wide variety of detectors (e.g., diodes, OSL detectors, MOSFETS, radiochromic film) so they may be used with confidence to ensure accurate radiotherapy.**The final component is the extraction of photon spectra from measured depth-dose curves. Previous approaches suffered from a variety of problems but, by introducing an accurate correction for electron contamination, using dual detectors with different properties to measure the depth-dose curves, using our recently developed functional form to represent the bremsstrahlung spectra and explicitly accounting for the detector's response with depth in the phantom, this research program will overcome the previous problems and provide a robust way to accurately determine clinical accelerator spectra which are needed for the calculation of dose distributions in the patient.**While these four components of the research program will not provide any dramatic improvements in cancer treatment, collectively they will have a significant impact on how well radiation therapy is delivered and hence improve patient care by improving our physics understanding of dosimetry.
2011年AAPM医学物理学家暑期学校的主题是体外射束放射治疗的无障碍。开幕全体发言人认为,最有可能影响患者结局的问题是剂量计算准确性和校准准确性,因为这些问题影响患者的许多治疗中的每一个。该研究计划的目标是通过提供精确的研究工具来计算传统和新兴技术的剂量分布,并通过提供准确使用不同类型的辐射剂量计所需的新信息来改善放射治疗的剂量测定。该计划包括四个广泛联系的研究领域 **。25年来,PI一直深入参与EGS系统的开发,该系统用于模拟辐射通过物质的传输。 EGSnrc被认为是此类软件的黄金标准。 然而,随着MRI-放疗联合系统的出现,有必要将EGSnrc系统扩展到在磁场存在下工作,磁场会对所输送的剂量和用于测量剂量的一些仪器产生强烈影响。其他改进将保持代码的准确性并显着提高其效率。 测量将与NRC的标准实验室合作进行,以验证计算的准确性。这些改进将提供给世界各地的研究人员,以便他们可以独立验证新的MRI治疗系统,并更有效地研究许多其他问题。第二个研究领域是用于测量放射治疗治疗剂量的离子室的校正因子的计算。PI小组最近计算的用于直线加速器光子束的值已被推荐用于整个北美的临床使用。在本程序中,将对更复杂的电子束进行计算和测量,并计算低能X射线束的校正。第三个研究领域是将我们最近在放射性剂量计方面的工作扩展到广泛的临床探测器。有了现在可用的软件,我们能够更准确地模拟探测器响应,并研究探测器的现实模型的影响。在2009年AAPM暑期学校推广的概念框架内,现在可以更清楚地描述探测器的响应。我们对探测器的研究表明,有许多微妙之处是大多数临床物理学家所不知道的。我们的目标是使用蒙特卡罗模拟来澄清各种探测器的这些类型的问题(例如,二极管、OSL探测器、光电转换器、辐射变色胶片),因此可以放心使用,以确保精确的放射治疗。**最后一部分是从测量的深度-剂量曲线中提取光子光谱。以前的方法存在各种问题,但是,通过引入对电子污染的精确校正,使用具有不同属性的双探测器来测量深度-剂量曲线,使用我们最近开发的函数形式来表示韧致辐射谱,并明确说明探测器对体模中深度的响应,这项研究计划将克服以前的问题,并提供一种可靠的方法来准确地确定临床加速器谱,这是计算病人体内剂量分布所需要的。虽然研究计划的这四个组成部分不会为癌症治疗提供任何显着的改善,但它们将对放射治疗的效果产生重大影响,从而通过提高我们对剂量学的物理理解来改善患者护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rogers, David其他文献
Cinema:Bandit: a visualization application for beamline science demonstrated on XFEL shock physics experiments
- DOI:
10.1107/s1600577519014322 - 发表时间:
2019-11-18 - 期刊:
- 影响因子:2.5
- 作者:
Orban, Daniel;Banesh, Divya;Rogers, David - 通讯作者:
Rogers, David
Extended-Connectivity Fingerprints
- DOI:
10.1021/ci100050t - 发表时间:
2010-05-01 - 期刊:
- 影响因子:5.6
- 作者:
Rogers, David;Hahn, Mathew - 通讯作者:
Hahn, Mathew
Enflurane Additive for Sodium Negative Electrodes.
- DOI:
10.1021/acsami.2c06502 - 发表时间:
2022-08-17 - 期刊:
- 影响因子:9.5
- 作者:
Akkisetty, Bhaskar;Dimogiannis, Konstantinos;Searle, Joanne;Rogers, David;Newton, Graham N.;Johnson, Lee R. - 通讯作者:
Johnson, Lee R.
Teaching operating room conflict management to surgeons: clarifying the optimal approach
- DOI:
10.1111/j.1365-2923.2011.04040.x - 发表时间:
2011-09-01 - 期刊:
- 影响因子:6
- 作者:
Rogers, David;Lingard, Lorelei;Schindler, Nancy - 通讯作者:
Schindler, Nancy
Functional traits mediate individualistic species-environment distributions at broad spatial scales while fine-scale species associations remain unpredictable.
- DOI:
10.1002/ajb2.16085 - 发表时间:
2022-12 - 期刊:
- 影响因子:3
- 作者:
Beck, Jared J.;Li, Daijiang;Johnson, Sarah E.;Rogers, David;Cameron, Kenneth M.;Sytsma, Kenneth J.;Givnish, Thomas J.;Waller, Donald M. - 通讯作者:
Waller, Donald M.
Rogers, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rogers, David', 18)}}的其他基金
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
283248-2009 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
283248-2009 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
DDH头臼匹配性三维空间形态表征及PAO
手术髋臼重定向Monte Carlo随机最优控
制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂空间上具有特殊约束的Monte Carlo方法
- 批准号:12371269
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
- 批准号:21863010
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
间接优化的高效Monte Carlo声传播研究
- 批准号:61772458
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
- 批准号:51606049
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
- 批准号:41674076
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Development of a Monte Carlo-based dose distribution verification system for HDR brachytherapy.
开发基于蒙特卡罗的 HDR 近距离放射治疗剂量分布验证系统。
- 批准号:
22K07307 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development de modèles réalistes pour simulations radiation-matière par méthode Monte Carlo
蒙特卡洛辐射模拟仿真模块的开发
- 批准号:
574005-2022 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
University Undergraduate Student Research Awards
Development of the next-generation GPU-based Monte Carlo simulation platform for radiation-induced DNA damage calculations
开发下一代基于 GPU 的蒙特卡罗模拟平台,用于辐射引起的 DNA 损伤计算
- 批准号:
10203527 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Novel development in stochastic optimization using multilevel Monte Carlo methods
使用多级蒙特卡罗方法进行随机优化的新发展
- 批准号:
20K03744 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the diagrammatic Monte Carlo method and its applications to cold Fermi gases
图解蒙特卡罗方法的发展及其在冷费米气体中的应用
- 批准号:
18K13477 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
SSE: Development of a High-Performance Parallel Gibbs Ensemble Monte Carlo Simulation Engine
SSE:高性能并行吉布斯集成蒙特卡罗仿真引擎的开发
- 批准号:
1642406 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Development of a new Monte Carlo method for precise spin state calculations of multinuclear metal complexes
开发一种新的蒙特卡罗方法,用于多核金属配合物的精确自旋态计算
- 批准号:
16K13935 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of Monte Carlo techniques for radiation transport simulations and application to radiotherapy physics and dosimetry
辐射传输模拟蒙特卡罗技术的开发及其在放射治疗物理和剂量测定中的应用
- 批准号:
RGPIN-2014-05340 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual