Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms

使用数据挖掘和机器学习算法改进水管破裂的基础设施评估

基本信息

  • 批准号:
    RGPIN-2018-04623
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Maintaining the integrity of buried water infrastructure is at the forefront of priority issues for municipalities across Canada. However, substantial portions of our buried water infrastructure are in need of repair/ rehabilitation, and possible replacement, all of which require significant expenditures. Increased vulnerability to imposed stresses as a result of climate change and urban densification, and avoiding compromised water quality, are examples of challenges complicating the prioritization of investments.*** In response, this research proposal is focused on developing guidance procedures to most effectively direct such expenditures. The merits of dramatically improved data mining and machine learning algorithms, and including the potential to improve the utilization of information now available from evolving smart data acquisition procedures becoming available, will be explored in this research.*** Research insights will include the merits of prioritization to include factors such as health risks, external factors of adjacency of high-cost impacts should pipe failure occur, climate change influencing water demand patterns, urban intensification and the concomitant increased demands that will arise, all of which contribute to the merits of a performance-based management approach for failure prediction assessments.*** Data mining models will be used to improve discovery of patterns, and machine language models will be employed to improve prediction efforts, all with the intent to improve pipe break prediction modeling and to provide better prioritization approaches for types of pipe rehabilitation. The utility of smart infrastructure technology will also be explored to determine the potential to decrease water distribution issues of pipe breaks and maintenance issues.*** This research will train HQP students in municipal engineering water infrastructure (condition evaluation, lifecycle costing, lifecycle prediction, deterioration modeling, machine learning, and data mining approaches). The proposed research will provide direct funding to assist in the training of three PhD and four masters students,one U/G, and a post-doc. The goal is to include the mentoring of grad students in research management and effective communication skills in this critical area of Canadian needs.
维护地下水资源基础设施的完整性是加拿大各地市政当局优先考虑的问题。然而,我们埋藏的水基础设施的很大一部分需要维修/恢复,并可能需要更换,所有这些都需要大量支出。气候变化和城市密集所造成的压力的脆弱性增加,以及避免水质受损,都是使投资轻重缓急复杂化的挑战的例子。*作为回应,本研究提案的重点是制定指导程序,以最有效地指导此类支出。这项研究将探索显著改进的数据挖掘和机器学习算法的优点,以及包括提高现有智能数据采集程序可用信息利用率的潜力。*研究见解将包括以下因素的优点:健康风险、管道发生故障时高成本影响的邻近外部因素、气候变化对用水需求模式的影响、城市集约化以及随之而来的需求增加,所有这些都有助于基于绩效的管理方法的优点,用于故障预测评估。*数据挖掘模型将用于改进模式的发现,将使用机器语言模型来改进预测工作,所有这些都是为了改进管道破裂预测模型,并为管道修复类型提供更好的优先方法。还将探索智能基础设施技术的应用,以确定减少水管破裂和维护问题的供水问题的潜力。*本研究将培训HQP学生市政工程水基础设施(状态评估、生命周期成本计算、生命周期预测、恶化建模、机器学习和数据挖掘方法)。拟议的研究将提供直接资金,以协助培训三名博士生和四名硕士生,一名U/G和一名博士后。目标是在加拿大这一关键需求领域,将研究生的指导纳入研究管理和有效的沟通技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mcbean, Edward其他文献

Mcbean, Edward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mcbean, Edward', 18)}}的其他基金

Risk and return on investment tool (RROIT)
风险与投资回报工具(RROIT)
  • 批准号:
    536582-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants
Data Mining Tools to Improve Buried Water Infrastructure Decision-Making
改善埋地水基础设施决策的数据挖掘工具
  • 批准号:
    9318-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Impacts of floating offshore wind infrastructure on the distribution and behaviour of fish and marine mammals: IFLOW
浮动海上风电基础设施对鱼类和海洋哺乳动物的分布和行为的影响:IFLOW
  • 批准号:
    2744014
  • 财政年份:
    2026
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Studentship
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
  • 批准号:
    2345142
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Cooperative Agreement
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Cooperative Agreement
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了