Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
基本信息
- 批准号:RGPIN-2016-04199
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The program includes the following projects:***1. Decomposition matrices.***In this research we develop the theory of Fourier decomposition of the data sampled on finite fragments of the lattice defined by Lie group. The decomposition series contains exactly as many terms as the number of discrete points where the data is sampled. This implies that the outcomes and applications of the research should significantly improve multi-dimensional digital data processing in terms of computational speed, and memory and hardware requirements. It will be possible to compute accelerated Fourier expansions in n-dimensions using the decomposition matrices.***2. Central splitting of data on compact semisimple Lie groups.***Any data on a semisimple Lie group with the center of order z can be split into z components that add up to the data function. Each component can be processed independently. This possibility has never never been exploited except in [30] where 3 examples involving low group ranks, i.e. low dimensions of data are pointed out. In the project we will systematically explore the possibility of splitting the data for groups of any rank.***3. Multidimensional Nyquist-Shannon theorem.***The Nyquist-Shannon theorem describes the relation between the number of points at which a signal is sampled and the number of harmonics in the signal's Fourier expansion. The theorem is well known for 1-dimensional signals and 1-dimensional harmonics.***The goal is to generalize the Nyquist-Shannon theorem to N-dimensional signals sampled on points of lattices of all possible symmetries and densities. The 2D and 3D cases will be described (in a ready- to-use form) when the 'signals' and 'harmonics' are found as lattice points of any density and any symmetry.***4. Hooke's law approximation for isotropic material using Lie groups.***Deformation of polytopes via changes of their parameters can be exploited to determine some of their dynamic behaviour. Assuming the parameters as generalized coordinates in Lagrange mechanics, corresponding oscillations and movements can be found. ***5. Decomposition of colored digital data.***We intend to describe how to color a lattice by N different colors. It consists of attaching an integer between 0 and N to any lattice point according to some algebraic rule. We will present a description of a lattice, defined by the semisimple compact Lie groups, as a union of monochromatic sets of points. ***6. Encryption and decryption of digital data in the Fourier space.***Our general idea of the approach is to permute the decomposition coefficients while keeping the expansion functions in their place. For short expansion all permutations can be tried. In realistic cases when the expansion can have hundreds of terms it is secure because all the permutations cannot be explored. In our approach the permutation of the coefficients is provided by the quasicrystal mapping rule which can be applied to expansion to any finite length.**
该计划包括以下项目:**1。分解矩阵。*在这项研究中,我们开发的理论傅立叶分解的数据采样有限片段的晶格定义的李群。分解序列包含的项正好与数据被采样的离散点的数量一样多。这意味着研究的成果和应用应该在计算速度、内存和硬件要求方面显着提高多维数字数据处理。使用分解矩阵可以计算n维的加速傅立叶展开。* 2.紧半单李群上数据的中心分裂。*任何以z阶为中心的半单李群上的数据都可以被分解为z个分量,这些分量加起来就是数据函数。每个组件都可以独立处理。这种可能性从来没有被利用过,除了在[30]中指出了3个涉及低组秩的例子,即低维度的数据。在本项目中,我们将系统地探索将数据分为任何等级的可能性。*** 3.多维Nyquist-Shannon定理。*奈奎斯特-香农定理描述了信号采样点的数量与信号傅立叶展开中谐波数量之间的关系。该定理对于一维信号和一维谐波是众所周知的。我们的目标是将Nyquist-Shannon定理推广到所有可能的对称性和密度的格点上采样的N维信号。当“信号”和“谐波”被发现为任何密度和任何对称性的晶格点时,将描述2D和3D情况(以即用形式)。4.使用李群的各向同性材料的虎克定律近似。*通过改变多面体的参数,可以利用多面体的变形来确定它们的一些动力学行为。假设这些参数为拉格朗日力学中的广义坐标,则可以找到相应的振荡和运动。彩色数字数据的分解。*我们打算描述如何用N种不同的颜色来着色一个格子。它包括根据一些代数规则将0和N之间的整数附加到任何格点。我们将描述一个格,由半单紧李群定义,作为单色点集的并集。*6。在傅立叶空间中加密和解密数字数据。*我们的方法的一般思想是置换分解系数,同时保持在其位置的扩展功能。对于短扩展,可以尝试所有排列。在实际情况下,当扩展可以有数百个项时,它是安全的,因为所有的排列都不能被探索。在我们的方法中,系数的排列是由准晶映射规则提供的,准晶映射规则可以应用于任何有限长度的展开。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patera, Jiri其他文献
Cubature Formulas of Multivariate Polynomials Arising from Symmetric Orbit Functions
- DOI:
10.3390/sym8070063 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:2.7
- 作者:
Hrivnak, Jiri;Motlochova, Lenka;Patera, Jiri - 通讯作者:
Patera, Jiri
Orbit Functions
- DOI:
10.3842/sigma.2006.006 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Klimyk, Anatoliy;Patera, Jiri - 通讯作者:
Patera, Jiri
Two-dimensional symmetric and antisymmetric generalizations of sine functions
- DOI:
10.1063/1.3430567 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:1.3
- 作者:
Hrivnak, Jiri;Motlochova, Lenka;Patera, Jiri - 通讯作者:
Patera, Jiri
Generating Functions for Orthogonal Polynomials of A2, C2 and G2
- DOI:
10.3390/sym10080354 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:2.7
- 作者:
Czyzycki, Tomasz;Hrivnak, Jiri;Patera, Jiri - 通讯作者:
Patera, Jiri
Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions
- DOI:
10.1063/1.3282850 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:1.3
- 作者:
Hrivnak, Jiri;Patera, Jiri - 通讯作者:
Patera, Jiri
Patera, Jiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patera, Jiri', 18)}}的其他基金
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Hard and soft information fusion to aid situation understanding
硬信息和软信息融合,帮助了解情况
- 批准号:
514501-2017 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Hard and soft information fusion to aid situation understanding
硬信息和软信息融合,帮助了解情况
- 批准号:
514501-2017 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Symmetries in physics applications
物理应用中的对称性
- 批准号:
9772-2011 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Symmetries in physics applications
物理应用中的对称性
- 批准号:
9772-2011 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Symmetries in physics applications
物理应用中的对称性
- 批准号:
9772-2011 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
- 批准号:
10672626 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Elements: Software: Multidimensional Fast Fourier Transforms on the Path to Exascale
要素:软件:通向百亿亿次计算之路的多维快速傅里叶变换
- 批准号:
1835885 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Extension of wavelet transforms and their applications to multidimensional data analysis
小波变换的扩展及其在多维数据分析中的应用
- 批准号:
17K12716 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fourier transforms on multidimensional lattices and their exploitation in physics
多维晶格的傅里叶变换及其在物理学中的应用
- 批准号:
RGPIN-2016-04199 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Learning-Based Design and Implementation of Non-separable Oversampled Lapped Transforms for Multidimensional Signal Restoration
基于学习的多维信号恢复不可分离过采样重叠变换的设计与实现
- 批准号:
26420347 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lossy-to-lossless video coding using multidimensional adaptive transforms for cloud generation
使用多维自适应变换进行有损到无损视频编码以进行云生成
- 批准号:
25820152 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)