Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches

搜索和分析大数据:上下文敏感和任务感知的方法

基本信息

  • 批准号:
    RGPIN-2015-03807
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Using Google is easy. Finding information using Google is another matter. Over the decades, significant progress has been made in Information Retrieval (IR). However, IR is far from a solved problem and many challenges remain. First, most Web search engines take a short text query as input and output a ranked list of documents. The retrieval decision is made primarily based on the current query and document collection. The results for a given query are usually identical, independent of the user or the context in which the user made the request. Second, IR is an interactive process. With the current document-centered retrieval paradigm, interactive retrieval is treated as a sequence of independent simple retrieval decision making steps. However, it has been brought into attention that analysis of task-aware user sessions, which contain a sequence of requests submitted by a user to fulfill an information need, provides useful insight into the query behavior of the user. Third, most of present IR systems use keywords to query and index documents. However, this traditional keyword-based IR model provides little semantic context for the understanding of user information needs, which can lead to mismatch between query and document in search. Ideally, one would like to see the query and document match with each other, if they are topically relevant. Thus, the integration of semantic context according to the user's information need and the user's understanding of the documents into IR systems is needed to improve the IR performance. Fourth, organizations are now increasingly dealing with petabyte-scale collections of data. Context-sensitive and task-aware approaches become more challenging when dealing with big data. Hence, it is important to propose new algorithms and models that can effectively and efficiently process big data and implement the context-sensitive and task-aware approaches in big-data scenarios.****In a world where data are growing at extraordinary rates, there is a huge demand for searching and analyzing big data more accurately and effectively to discover useful information. This research program tackles the problem of searching and discovering useful information from big text data. The long-term objective of the proposed research is to overcome the limitations of the existing IR methods and formally develop a new retrieval paradigm called context-sensitive and task-aware information search for big data. In particular, (1) we will develop a new theoretical retrieval framework for capturing rich user information and providing personalized search results; (2) we will develop novel task-based retrieval methods for context-sensitive information retrieval to optimize the long-term retrieval utility over an entire retrieval session; (3) we will develop new models for automatically analyzing and searching big data to efficiently extract knowledge and perform semantic matching. **
使用Google很容易。使用Google搜索是另一回事。几十年来,信息检索取得了重大进展。然而,IR远未解决问题,仍存在许多挑战。首先,大多数Web搜索引擎将短文本查询作为输入,并输出文档的排名列表。检索决策主要基于当前查询和文档集合。给定查询的结果通常是相同的,与用户或用户发出请求的上下文无关。第二,信息检索是一个互动的过程。在当前以文档为中心的检索范式中,交互式检索被视为一系列独立的简单检索决策步骤。然而,它已经引起注意的任务感知用户会话,其中包含一系列的请求提交的用户,以满足信息需求的分析,提供了有用的洞察用户的查询行为。第三,目前大多数IR系统都使用关键字来查询和索引文档。然而,这种传统的基于关键词的信息检索模型提供的语义上下文很少,用户的信息需求的理解,这可能会导致查询和搜索中的文档不匹配。理想情况下,人们希望看到查询和文档彼此匹配,如果它们是主题相关的。因此,需要根据用户的信息需求和用户对文档的理解将语义上下文集成到IR系统中,以提高IR性能。第四,组织现在越来越多地处理PB级的数据收集。在处理大数据时,上下文敏感和任务感知方法变得更具挑战性。因此,重要的是提出新的算法和模型,可以有效地处理大数据,并在大数据场景中实现上下文敏感和任务感知方法。在数据以惊人的速度增长的世界中,人们对更准确有效地搜索和分析大数据以发现有用信息的需求巨大。该研究计划解决了从大文本数据中搜索和发现有用信息的问题。该研究的长期目标是克服现有IR方法的局限性,并正式开发一种新的检索范式,称为上下文敏感和任务感知的大数据信息搜索。具体而言,(1)我们将开发一个新的理论检索框架,用于捕获丰富的用户信息并提供个性化的搜索结果;(2)我们将开发新的基于任务的检索方法,用于上下文敏感的信息检索,以优化整个检索会话的长期检索效用;(3)开发自动分析和搜索大数据的新模型,高效提取知识,进行语义匹配。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huang, Jimmy其他文献

Reconceptualizing rhetorical practices in organizations: The impact of social media on internal communications
  • DOI:
    10.1016/j.im.2012.11.003
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Huang, Jimmy;Baptista, Joao;Galliers, Robert D.
  • 通讯作者:
    Galliers, Robert D.
Communicational ambidexterity as a new capability to manage social media communication within organizations
Turnaround user acceptance in the context of HR self-service technology adoption: an action research approach
GROWING ON STEROIDS: RAPIDLY SCALING THE USER BASE OF DIGITAL VENTURES THROUGH DIGITAL INNOVATON
  • DOI:
    10.25300/misq/2017/41.1.16
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Huang, Jimmy;Henfridsson, Ola;Newell, Sue
  • 通讯作者:
    Newell, Sue

Huang, Jimmy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huang, Jimmy', 18)}}的其他基金

Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2015
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A comprehensive study for analyzing and eliminating health inequalities in Japan using national statistics and medical big data
利用国家统计数据和医疗大数据分析和消除日本健康不平等现象的综合研究
  • 批准号:
    23K16341
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a method for comprehensively analyzing the interaction between RNA and small molecule and analysis on big data of the RNA-small molecule binding pairs
建立RNA与小分子相互作用综合分析方法及RNA-小分子结合对大数据分析
  • 批准号:
    21H02079
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Indonesian Area Studies and Reconsideration of Good Governance Framework: Analyzing Big Data
印度尼西亚地区研究和良好治理框架的重新思考:分析大数据
  • 批准号:
    19KK0032
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了