Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches

搜索和分析大数据:上下文敏感和任务感知的方法

基本信息

  • 批准号:
    RGPIN-2020-07157
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Using Google is easy. Finding information using Google is another matter. Over the decades, significant progress has been made in Information Retrieval (IR). However, IR is far from a solved problem and many challenges remain. First, most Web search engines take a short text query as input and output a ranked list of documents. The retrieval decision is made primarily based on the current query and document collection. The results for a given query are usually identical, independent of the user or the context in which the user made the request. For example, a person may use "IRIX" to mean Information Retrieval in Context at one time, but IRIX operating systems at another time. It is impossible for the current Web search systems to distinguish these two cases because the user's search context is not considered. Second, IR is, in general, an interactive process. With the current document-centered retrieval paradigm, interactive retrieval is treated as a sequence of independent simple retrieval decision making steps. However, it has been brought into attention that analysis of task-oriented user sessions provides useful insight into the query behavior of the users. Third, most of present IR systems including general search engines (e.g. Google and Bing) and scientific literature search engines (e.g. PubMed and ACM Digital Library) use keywords to query and index documents. However, this traditional keyword based IR model provides little semantic context for the understanding of user information needs, which poses a critical challenge of mismatch between query and document in search. Ideally, one would like to see query and document match with each other, if they are topically relevant or semantically close. Thus, the integration of semantic context according to the user's understanding of the documents in the collection into IR systems (e.g. via utilizing natural language processing techniques) will improve the IR performance. Fourth, context-sensitive and task-oriented approaches are even more challenging to implement with huge amounts of data accumulated every day. With the availability of deep learning and data analyzing techniques, context-sensitive and task-oriented approaches become more feasible for semantic-based matching. The long-term objective of the proposed research is to overcome the limitations of the existing IR methods and formally develop a new retrieval paradigm called context-sensitive and task-aware information search for big data. In particular, (1) we will develop novel theoretical models to automatically analyze text data with very large quantity to efficiently extract knowledge and perform both semantic and exact matching accurately; (2) we will develop a new retrieval framework for capturing user information and search context in big data; (3) we will develop novel task-based retrieval methods for context-sensitive information retrieval to optimize the long-term retrieval utility over an entire retrieval session.
使用谷歌很容易。使用谷歌查找信息是另一回事。在过去的几十年里,信息检索(Information Retrieval, IR)取得了显著的进步。然而,国际关系问题远未解决,仍然存在许多挑战。首先,大多数Web搜索引擎将一个简短的文本查询作为输入,并输出一个文档排序列表。检索决策主要基于当前查询和文档集合。给定查询的结果通常是相同的,独立于用户或用户发出请求的上下文。例如,一个人可能在某个时间使用“IRIX”表示上下文中的信息检索,但在另一个时间使用IRIX操作系统。目前的Web搜索系统不可能区分这两种情况,因为没有考虑用户的搜索上下文。其次,IR通常是一个互动的过程。在当前以文档为中心的检索范式中,交互式检索被视为一系列独立的简单检索决策步骤。然而,人们已经注意到,对面向任务的用户会话的分析提供了对用户查询行为的有用洞察。第三,目前大多数IR系统,包括通用搜索引擎(如b谷歌和Bing)和科学文献搜索引擎(如PubMed和ACM数字图书馆),都使用关键字来查询和索引文档。然而,这种传统的基于关键字的IR模型为理解用户信息需求提供了很少的语义上下文,这给搜索中的查询和文档不匹配带来了严峻的挑战。理想情况下,如果查询和文档在主题上相关或语义上接近,人们希望看到它们相互匹配。因此,根据用户对集合中文档的理解将语义上下文集成到IR系统中(例如,通过利用自然语言处理技术)将提高IR性能。第四,上下文敏感和面向任务的方法在每天积累大量数据的情况下实施起来更具挑战性。随着深度学习和数据分析技术的出现,上下文敏感和面向任务的方法对于基于语义的匹配变得更加可行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huang, Jimmy其他文献

Reconceptualizing rhetorical practices in organizations: The impact of social media on internal communications
  • DOI:
    10.1016/j.im.2012.11.003
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Huang, Jimmy;Baptista, Joao;Galliers, Robert D.
  • 通讯作者:
    Galliers, Robert D.
Communicational ambidexterity as a new capability to manage social media communication within organizations
Turnaround user acceptance in the context of HR self-service technology adoption: an action research approach
GROWING ON STEROIDS: RAPIDLY SCALING THE USER BASE OF DIGITAL VENTURES THROUGH DIGITAL INNOVATON
  • DOI:
    10.25300/misq/2017/41.1.16
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Huang, Jimmy;Henfridsson, Ola;Newell, Sue
  • 通讯作者:
    Newell, Sue

Huang, Jimmy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huang, Jimmy', 18)}}的其他基金

Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2015
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A comprehensive study for analyzing and eliminating health inequalities in Japan using national statistics and medical big data
利用国家统计数据和医疗大数据分析和消除日本健康不平等现象的综合研究
  • 批准号:
    23K16341
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a method for comprehensively analyzing the interaction between RNA and small molecule and analysis on big data of the RNA-small molecule binding pairs
建立RNA与小分子相互作用综合分析方法及RNA-小分子结合对大数据分析
  • 批准号:
    21H02079
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2020-07157
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Causal Inference Methods in Statistics for Analyzing Big Data
改进统计学中用于分析大数据的因果推理方法
  • 批准号:
    RGPIN-2018-05044
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
  • 批准号:
    RGPIN-2015-03807
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Indonesian Area Studies and Reconsideration of Good Governance Framework: Analyzing Big Data
印度尼西亚地区研究和良好治理框架的重新思考:分析大数据
  • 批准号:
    19KK0032
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了