Machinery Diagnostics Using Mechanistic and Data-Driven Models

使用机械和数据驱动模型进行机械诊断

基本信息

  • 批准号:
    RGPIN-2017-04788
  • 负责人:
  • 金额:
    $ 3.21万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

All machines are prone to some kind of failure. Machinery diagnostics allows maintenance to be done before a catastrophic failure occurs, by observing some aspect of machine behaviour that indicates an impending problem and then using signal processing and feature extraction to determine whether a fault is present. Some techniques can also predict the remaining useful life of the machine in certain conditions. Unfortunately, limited observability and machine-specific approaches to condition monitoring make data-driven models difficult to apply in general applications. New sensor technologies and embedded sensor network standards hold promise to significantly improve the observability of faults in machinery, both for new equipment and for retrofits to existing components and systems. The new instalment of Discovery-Grant based research will test the hypothesis that improving observability of damage mechanisms will enable system reliability improvements. Individual methods and combined methods of fault classification will be assessed for laboratory-based fault diagnosis case studies of impact faults in rotating machinery and process equipment. Physics-based modeling will be used to evaluate how to measure faults sensitively in rolling-element bearings and process equipment subject to impact wear. The laboratory systems will be publicly available so that others can test the performance of their method using benchmark datasets. Fault models of chronic impact events apply to a wide range of rotating equipment & process units, for process plants, wind turbine generators, and vehicles. Parametric fault identification models will be of direct benefit to industry and to other researchers. Comparative methods for ranking fault severity will yield better methods to predict equipment life and improve maintenance effectiveness. Datasets for machine damage cases will allow researchers to compare diagnostic techniques definitively, contributing to best practices. Improved fault diagnostics will contribute to more durable repairable equipment and products with longer service life, which is crucial for a more sustainable technological future.
所有的机器都容易出某种故障。机器诊断允许在灾难性故障发生之前进行维护,通过观察机器行为的某些方面,表明即将发生的问题,然后使用信号处理和特征提取来确定是否存在故障。一些技术还可以预测机器在某些条件下的剩余使用寿命。不幸的是,有限的可观察性和特定于机器的状态监测方法使得数据驱动模型难以应用于一般应用。新的传感器技术和嵌入式传感器网络标准有望显着提高机器故障的可观察性,无论是新设备还是对现有组件和系统的改造。新一批的发现补助金为基础的研究将测试的假设,提高损坏机制的可观察性将使系统的可靠性提高。将评估故障分类的单个方法和组合方法,用于旋转机械和过程设备中的冲击故障的基于实验室的故障诊断案例研究。基于物理的建模将用于评估如何在滚动轴承和受冲击磨损的过程设备中灵敏地测量故障。实验室系统将公开提供,以便其他人可以使用基准数据集测试其方法的性能。慢性冲击事件的故障模型适用于广泛的旋转设备和过程单元,用于加工厂,风力涡轮机发电机和车辆。参数化故障识别模型将直接有益于工业和其他研究人员。故障严重度排序的比较方法将产生更好的方法来预测设备寿命和提高维护效率。机器损坏案例的数据集将使研究人员能够明确地比较诊断技术,为最佳实践做出贡献。改进的故障诊断将有助于更耐用的可维修设备和产品,具有更长的使用寿命,这对于更可持续的技术未来至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lipsett, Michael其他文献

Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines
An association between asthma and BMI in adolescents: Results from the california healthy kids survey
  • DOI:
    10.1080/02770900701752656
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Davis, Adam;Lipsett, Michael;Kreutzer, Richard
  • 通讯作者:
    Kreutzer, Richard
Experimental determination of the inertial properties of small robotic systems using a torsion platform
  • DOI:
    10.1016/j.ymssp.2019.05.021
  • 发表时间:
    2019-09-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Olmedo, Nicolas A.;Barczyk, Martin;Lipsett, Michael
  • 通讯作者:
    Lipsett, Michael
Real-world cell phone radiofrequency electromagnetic field exposures
  • DOI:
    10.1016/j.envres.2018.09.015
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Wall, Stephen;Wang, Zhong-Min;Lipsett, Michael
  • 通讯作者:
    Lipsett, Michael
Early childhood lower respiratory illness and air pollution.
儿童早期下呼吸道疾病和空气污染。
  • DOI:
    10.1289/ehp.9617
  • 发表时间:
    2007-10
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Hertz-Picciotto, Irva;Baker, Rebecca James;Yap, Poh-Sin;Dostal, Miroslav;Joad, Jesse P;Lipsett, Michael;Greenfield, Teri;Herr, Caroline E W;Benes, Ivan;Shumway, Robert H;Pinkerton, Kent E;Sram, Radim
  • 通讯作者:
    Sram, Radim

Lipsett, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lipsett, Michael', 18)}}的其他基金

Machinery Diagnostics Using Mechanistic and Data-Driven Models
使用机械和数据驱动模型进行机械诊断
  • 批准号:
    RGPIN-2017-04788
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Diagnostics and advanced models for the reduction of unplanned underground conductor failures
用于减少地下导体意外故障​​的诊断和先进模型
  • 批准号:
    543705-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Diagnostics and advanced models for the reduction of unplanned underground conductor failures
用于减少地下导体意外故障​​的诊断和先进模型
  • 批准号:
    543705-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Machinery Diagnostics Using Mechanistic and Data-Driven Models
使用机械和数据驱动模型进行机械诊断
  • 批准号:
    RGPIN-2017-04788
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Approaches to Native Plant Establishment on Treated Mature Fine Tailings: From Manipulation of Plant Materials to Use of Robotic Systems
在经过处理的成熟细尾矿上建立原生植物的方法:从植物材料的操作到机器人系统的使用
  • 批准号:
    532352-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Diagnostics and advanced models for the reduction of unplanned underground conductor failures
用于减少地下导体意外故障​​的诊断和先进模型
  • 批准号:
    543705-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Machinery Diagnostics Using Mechanistic and Data-Driven Models
使用机械和数据驱动模型进行机械诊断
  • 批准号:
    RGPIN-2017-04788
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Machinery Diagnostics Using Mechanistic and Data-Driven Models
使用机械和数据驱动模型进行机械诊断
  • 批准号:
    RGPIN-2017-04788
  • 财政年份:
    2017
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Physics-Based Models with Signal-Based Methods for Machinery Diagnostics in Time-Varying Systems with Production and Environmental Risks
将基于物理的模型与基于信号的方法相结合,用于具有生产和环境风险的时变系统中的机械诊断
  • 批准号:
    239184-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Combining Physics-Based Models with Signal-Based Methods for Machinery Diagnostics in Time-Varying Systems with Production and Environmental Risks
将基于物理的模型与基于信号的方法相结合,用于具有生产和环境风险的时变系统中的机械诊断
  • 批准号:
    239184-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
  • 批准号:
    2236466
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Research on Insulation Properties and Diagnostics for Smart Electric Power Equipment by Measuring Discharge Current Using a Super High Frequency Wideband Measurement System with Picosecond resolution
利用皮秒分辨率超高频宽带测量系统测量放电电流来研究智能电力设备的绝缘性能和诊断
  • 批准号:
    23H01401
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308948
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308947
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Development of Molecular Lung Transplant Diagnostics using Tissue-of-Origin Prediction of Cell-Free DNA
利用无细胞 DNA 的组织起源预测开发分子肺移植诊断
  • 批准号:
    489052
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Operating Grants
Advanced diagnostics of aircraft structures using automated non-invasive imaging techniques
使用自动化非侵入性成像技术对飞机结构进行高级诊断
  • 批准号:
    2878991
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Studentship
Accelerated prediction of virulence and antibiotic susceptibility for bacteria causing bloodstream infections using MALDI clinical diagnostics
使用 MALDI 临床诊断加速预测引起血流感染的细菌的毒力和抗生素敏感性
  • 批准号:
    2897050
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Studentship
ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
  • 批准号:
    2301535
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Early cancer diagnostics using evanescent wave Mid-IR spectroscopy
使用倏逝波中红外光谱进行早期癌症诊断
  • 批准号:
    2749522
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Studentship
Multiplexed and quantitative immunolabelling for cancer diagnostics using gold-silver alloy nanoprobes
使用金银合金纳米探针进行癌症诊断的多重定量免疫标记
  • 批准号:
    571982-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了