Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
基本信息
- 批准号:RGPIN-2016-05734
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simulation methods based on conventional offline models have been used widely in power system stability analysis and control design and they constitute effective tools for ensuring system stability. Effectiveness of these stability analysis and design methods is declining steadily because of the constant evolution of the power grid environment, the changes being largely attributable to increased variations in power flow and the difficulties in acquiring accurate offline models for various power-electronics-based devices. Advancement in information and communications technologies have facilitated transfer of massive data in real time and implies an opportunity for wider applications of advanced real time monitoring systems, allowing the acquisition of data of real time conditions and dynamics of various components of power systems. This makes the whole system more observable. Meanwhile, data-driven methods such as statistical machine learning techniques have developed significantly in recent times and have been successfully applied in various areas. Therefore, real time stability analysis and control using statistical machine learning techniques has become an important research direction since it aims to perceive the system's operational situation directly through real time data and provide insights into optimal operations and controls. This has the potential to resolve the problems of biased parameters when using offline models which, in most cases, do not fit real time operating conditions in the power grid. The significance of this research motivates this research program to combine statistical machine learning with domain knowledge in power systems and make them applicable to stability analysis and control in real power systems. The long-term goal of this research program is to develop new approaches for power system stability analysis and effective online model-free and self-optimization control strategies. To achieve this ultimate goal, the short-term goals are (i) to develop new approaches for prediction, control and optimization of power systems to resolve the problem of bias in offline models used in the conventional power system simulation; and (ii) to apply the general approaches proposed in this program to various problems related to power system stability and develop new online control strategies for the same. The outcomes of this research are expected to not only constitute milestones in power system stability analysis and control, but also contribute to the development of a more reliable and stable power system in the future.*** **
基于传统离线模型的仿真方法在电力系统稳定性分析和控制设计中得到了广泛的应用,是保证系统稳定的有效工具。由于电网环境的不断变化,这些稳定性分析和设计方法的有效性正在稳步下降,这种变化主要归因于潮流变化的增加以及各种电力电子设备难以获得准确的离线模型。信息和通信技术的进步促进了实时传输大量数据,并意味着有机会更广泛地应用先进的实时监测系统,从而可以获取电力系统各组成部分的实时情况和动态数据。这使得整个系统更易于观察。与此同时,数据驱动的方法,如统计机器学习技术,近年来有了显著的发展,并已成功地应用于各个领域。因此,利用统计机器学习技术进行实时稳定性分析与控制已成为一个重要的研究方向,因为它旨在通过实时数据直接感知系统的运行情况,并提供最优操作和控制的见解。这有可能解决使用离线模型时的参数偏差问题,在大多数情况下,离线模型不适合电网的实时运行条件。本研究的意义促使本研究计划将统计机器学习与电力系统领域知识相结合,并将其应用于实际电力系统的稳定性分析与控制。本研究计划的长期目标是开发电力系统稳定性分析的新方法以及有效的在线无模型和自优化控制策略。为了实现这一最终目标,短期目标是:(1)开发电力系统预测、控制和优化的新方法,以解决传统电力系统仿真中使用的离线模型的偏差问题;(ii)将本方案提出的一般方法应用于与电力系统稳定性有关的各种问题,并开发新的在线控制策略。本研究成果不仅在电力系统稳定性分析和控制方面具有里程碑意义,而且对未来发展更加可靠和稳定的电力系统也有重要意义。* * * * *
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung, ChiYung其他文献
Chung, ChiYung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung, ChiYung', 18)}}的其他基金
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative Research and Development Grants
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative Research and Development Grants
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Industrial Research Chairs
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative Research and Development Grants
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Industrial Research Chairs
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2017
- 资助金额:
$ 3.28万 - 项目类别:
Industrial Research Chairs
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2017
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
CUSTOMER SEGMENTATION AND VIRTUAL METER DEVELOPMENT BASED ON PROBABILISTIC MODELING OF RESIDENTIAL LOAD PROFILES THROUGH AMI
通过 AMI 对住宅负荷曲线进行概率建模的客户细分和虚拟仪表开发
- 批准号:
521306-2017 - 财政年份:2017
- 资助金额:
$ 3.28万 - 项目类别:
Engage Grants Program
相似国自然基金
基于铁死亡探讨黄芪甲苷调控System/Xc-/GSH/GPX4信号通路在神经损伤性勃起功能障碍治疗中的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
- 批准号:82304982
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
- 批准号:82360947
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内皮细胞机械敏感离子通道Piezo1通过HIF-1α/system Xc-介导BBB破坏在急性脑缺血再灌注损伤中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
- 批准号:2022JJ70123
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
- 批准号:
23K13326 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability Analysis of Power System with Massive Power Electronic Devices
含有大量电力电子器件的电力系统稳定性分析
- 批准号:
DP230100801 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Projects
Temporal-Spatial Data Analytics for Stochastic Power System Stability
随机电力系统稳定性的时空数据分析
- 批准号:
DE220101277 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Early Career Researcher Award
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Development of a novel high-efficiency, high-stability energy conversion system for salinity gradient power generation
开发新型高效、高稳定性能量转换系统用于盐度梯度发电
- 批准号:
21H04942 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on the wireless power transmission system for the railway vehicles using the high-temperature superconducting coils with thermal stability
热稳定性高温超导线圈铁路车辆无线电力传输系统研究
- 批准号:
20K22414 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Impact of Grid Forming Converters on Power System Stability
并网变流器对电力系统稳定性的影响
- 批准号:
2437798 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Studentship
Assessment of the numerical stability of power system transients co-simulators
电力系统暂态联合模拟器数值稳定性评估
- 批准号:
552941-2020 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Designing the next generation of wind turbine converter controllers for wind power applications: Enhancing the power system reliability, stability and
设计用于风力发电应用的下一代风力涡轮机变流器控制器:增强电力系统的可靠性、稳定性和
- 批准号:
2300479 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Studentship