CUSTOMER SEGMENTATION AND VIRTUAL METER DEVELOPMENT BASED ON PROBABILISTIC MODELING OF RESIDENTIAL LOAD PROFILES THROUGH AMI
通过 AMI 对住宅负荷曲线进行概率建模的客户细分和虚拟仪表开发
基本信息
- 批准号:521306-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Along with the growing inclusion of smart technologies into the electrical power grids, benefits, which can beoriginated from advanced metering infrastructure (AMI), have grabbed noticeable attention from distributionutilities. AMI is an architecture for automated, two-way communication between customers' meters and theutility; from the utility company point of view, AMI can provide real-time data of power consumption whichcan be efficiently used for several tasks such as network monitoring. Saskatoon Light & Power (SL&P) whichis a distribution utility in Saskatchewan has been operating the AMI system since July 2016. As the number ofmeters are severely ample in practical systems, SL&P, similar to other utilities, creates virtual meter data byaggregating loads served by distribution transformers. Although this process helps the operators to analyze thegrid with ease, it sacrifices valuable information provided by the AMI and confines their applications to thebilling process. Such an important deficiency can be considered as the main factor which motivates thisresearch program to delve more into the residential load profile modeling and find approaches which can yieldto the enhanced development of virtual meters. The long-term goal of collaboration between University ofSaskatchewan and SL&P is to find a novel framework that combines customer segmentation and virtual meterdevelopment processes together so that the end result not only can meet the operators expectations, but also canform a cutting-edge knowledge motivating other researchers to focus on this problem. To achieve this ultimategoal, the short-term goals which triggers starting a collaboration in terms of an engage grant are: (i) to assesscurrent probabilistic methods for modeling residential load profiles and select a method which can address theissue of highly volatile characteristics with respect to the practical needs; and (ii) to develop a framework forcustomer segmentation and virtual meter development based on both machine learning techniques and theprobabilistic modeling conducted in (i). The outcomes of this research are expected to constitute milestones inpower system monitoring, operation and control, and contribute to the development of a more reliable grid.
沿着智能技术越来越多地应用于电网,先进计量基础设施(AMI)带来的好处引起了配电公用事业公司的注意。AMI是一种用于客户仪表和公用事业之间自动化双向通信的架构;从公用事业公司的角度来看,AMI可以提供实时的功耗数据,这些数据可以有效地用于网络监控等多项任务。萨斯卡通电力公司(SL&P)是萨斯喀彻温省的一家配电公司,自2016年7月以来一直在运营AMI系统。由于在实际系统中电表的数量非常充足,SL&P类似于其他公用事业,通过聚合配电变压器所服务的负载来创建虚拟电表数据。虽然这一过程有助于运营商轻松分析电网,但它牺牲了AMI提供的宝贵信息,并将其应用限制在计费过程中。这样一个重要的不足可以被认为是主要因素,促使本研究计划深入到住宅负荷曲线建模,并找到方法,可以yieldto虚拟电表的增强发展。萨斯喀彻温大学和SL&P之间合作的长期目标是找到一个新的框架,将客户细分和虚拟电表开发过程结合在一起,使最终结果不仅可以满足运营商的期望,而且还可以形成一个尖端的知识,激励其他研究人员关注这个问题。为了实现这一最终目标,触发在参与补助金方面开始合作的短期目标是:(i)评估当前用于建模住宅负荷分布的概率方法,并选择能够针对实际需要解决高度波动特性问题的方法;以及(ii)基于机器学习技术和(i)中进行的概率建模,开发客户细分和虚拟电表开发的框架。这项研究的成果有望成为电力系统监测、运行和控制的里程碑,并有助于发展更可靠的电网。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung, ChiYung其他文献
Chung, ChiYung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung, ChiYung', 18)}}的其他基金
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Industrial Research Chairs
Planning and operation of integrated energy systems with high penetration of renewables
可再生能源高渗透率综合能源系统的规划和运营
- 批准号:
514655-2017 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Industrial Research Chairs
NSERC/SaskPower Industrial Research Chair in Smart Grid Technologies
NSERC/SaskPower 智能电网技术工业研究主席
- 批准号:
492877-2015 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Industrial Research Chairs
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
- 批准号:
23K11170 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Individual differences in temporal predictions in speech: word segmentation and conversational turn-taking
语音时间预测的个体差异:分词和会话轮流
- 批准号:
2863885 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
SBIR Phase II: High-Resolution Image Segmentation for Natural Resource Management
SBIR 第二阶段:用于自然资源管理的高分辨率图像分割
- 批准号:
2233680 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Cooperative Agreement
Automatic Segmentation in Cervical High-Dose Rate Brachytherapy
宫颈高剂量率近距离放射治疗中的自动分割
- 批准号:
495278 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU
2023 财年 SBIR 主题 402 第二阶段。
- 批准号:
10928777 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
伴侶動物のCT画像における人工知能を用いたsegmentation手法の開発
伴侣动物CT图像人工智能分割方法的开发
- 批准号:
23K14074 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the Role of ON and OFF Visual Pathways in Object Segmentation for Escape Behavior
阐明 ON 和 OFF 视觉通路在逃逸行为对象分割中的作用
- 批准号:
2212750 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant