Efficient Nanoscale Spin Filters

高效纳米级旋转过滤器

基本信息

  • 批准号:
    RGPIN-2018-05127
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

“Spintronics” is an active area of device research, in which spins of charge carriers are used for information storage and processing. Spintronics has already been hugely successful in the areas of hard disk drives and non-volatile memory. Significant work is underway in the areas of spin-based computing (classical, quantum, biological), which may propel device technology beyond the fundamental limits currently faced by conventional charge based electronics. In spintronics, charge carriers are required to be spin polarized - ideally 100% - in which spins of all carriers are oriented along one direction. ******At present, spin polarized carriers are generated by ferromagnets and their alloys, which act as “spin filters”. Unfortunately, these materials offer relatively poor spin polarization, typically around ~50% or less, which adversely affects the performance of spintronic devices. For example, it results in (a) poor signal-to-noise ratio in magnetic tunnel junctions and (b) poor on-off ratio in spin field effect transistors. Also, these materials don't perform well at extreme nanoscale dimensions, which makes it difficult to scale down device size. Thus improvement of spin filtering and achieving this in extremely small dimensions remain as open problems in spintronics.******The primary objective of this research program is to explore two nanoscale systems, which can potentially offer efficient spin filtering: (1) graphene triangular antidot lattice with zigzag edges and (2) single wall carbon nanotubes subjected to a helical potential. In the first case, our in-house expertise in graphene growth, nanopore array fabrication and spin transport measurements allow us to explore this area, which has not been investigated experimentally by any other group so far. In the second case, our recent results have shown that such systems can act as efficient spin filters. However, many detailed features remain to be explored and understood, which will be the focus of the proposed work.******The main significance of the proposed research is that it will allow high degree of spin filtering in extreme nanoscale dimensions, which is beyond the scope of current technology. The proposed systems can lead to ultimate scaling in data storage, sensing and computing, where atomic or molecular units will act as functional elements. This will allow efficient encoding of classical Boolean information in “spin up” and “spin down” states, without the risk of any “bit error” due to imperfect polarization. This will also enable efficient input/output interface for spin based quantum information processing. Efficient spin filtering will ensure error-free system initialization and read-out/storage of the output information. Thus, the proposed research program addresses one of the most fundamental roadblocks in spintronics, and can have a significant and broad impact on this area and propel it toward the ultimate atomic scaling limit.
“自旋电子学”是器件研究的一个活跃领域,其中电荷载流子的自旋用于信息存储和处理。自旋电子在硬盘驱动器和非易失性存储器领域已经取得了巨大的成功。在基于自旋的计算(经典、量子、生物)领域正在进行重要的工作,这可能会推动器件技术超越传统基于电荷的电子器件目前面临的基本限制。在自旋电子学中,电荷载流子需要被自旋极化-理想地100% -其中所有载流子的自旋沿沿着一个方向取向。** 目前,自旋极化载流子是由铁磁体及其合金产生的,它们起着“自旋过滤器”的作用。不幸的是,这些材料提供相对差的自旋极化,通常约为50%或更少,这对自旋电子器件的性能产生不利影响。例如,其导致(a)磁隧道结中的不良信噪比和(B)自旋场效应晶体管中的不良通断比。 此外,这些材料在极端的纳米尺度下表现不佳,这使得很难缩小器件尺寸。因此,自旋过滤的改进和在极小尺寸下实现这一点仍然是自旋电子学中的未决问题。该研究计划的主要目标是探索两种纳米级系统,它们可能提供有效的自旋过滤:(1)具有锯齿形边缘的石墨烯三角形反点晶格和(2)受到螺旋势的单壁碳纳米管。在第一种情况下,我们在石墨烯生长,纳米孔阵列制造和自旋输运测量方面的内部专业知识使我们能够探索这一领域,迄今为止还没有任何其他小组进行过实验研究。在第二种情况下,我们最近的结果表明,这样的系统可以作为有效的自旋过滤器。然而,许多细节特征仍有待探索和理解,这将是拟议工作的重点。这项研究的主要意义在于,它将允许在极端的纳米尺度上进行高度的自旋过滤,这超出了当前技术的范围。所提出的系统可以导致数据存储,传感和计算的最终扩展,其中原子或分子单元将充当功能元件。这将允许在“向上旋转”和“向下旋转”状态下对经典布尔信息进行有效编码,而没有由于不完美极化而导致的任何“比特错误”的风险。这也将实现用于基于自旋的量子信息处理的有效输入/输出接口。高效的自旋过滤将确保无错误的系统初始化和输出信息的读出/存储。因此,拟议的研究计划解决了自旋电子学中最基本的障碍之一,并可能对这一领域产生重大而广泛的影响,并将其推向最终的原子尺度极限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pramanik, Sandipan其他文献

Spin Filtering through Single-Wall Carbon Nanotubes Functionalized with Single-Stranded DNA
  • DOI:
    10.1002/adfm.201500494
  • 发表时间:
    2015-06-03
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Alam, Kazi M.;Pramanik, Sandipan
  • 通讯作者:
    Pramanik, Sandipan
Template-Assisted Synthesis of pi-Conjugated Molecular Organic Nanowires in the Sub-100 nm Regime and Device Implications
  • DOI:
    10.1002/adfm.201102967
  • 发表时间:
    2012-08-07
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Alam, Kazi M.;Singh, Abhay P.;Pramanik, Sandipan
  • 通讯作者:
    Pramanik, Sandipan
Spin filtering with poly-T wrapped single wall carbon nanotubes
  • DOI:
    10.1039/c6nr09395g
  • 发表时间:
    2017-04-28
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Alam, Kazi M.;Pramanik, Sandipan
  • 通讯作者:
    Pramanik, Sandipan
Efficient alternatives for Bayesian hypothesis tests in psychology.
  • DOI:
    10.1037/met0000482
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Pramanik, Sandipan;Johnson, Valen E
  • 通讯作者:
    Johnson, Valen E
Transverse magnetoconductance in two-terminal chiral spin-selective devices
  • DOI:
    10.1039/d2nh00502f
  • 发表时间:
    2023-01-25
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Hossain, Md Anik;Illescas-Lopez, Sara;Pramanik, Sandipan
  • 通讯作者:
    Pramanik, Sandipan

Pramanik, Sandipan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pramanik, Sandipan', 18)}}的其他基金

Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Spin Filtering with Chiral Organic Molecules and Graphene: Towards Chiral Spintronics
手性有机分子和石墨烯的自旋过滤:迈向手性自旋电子学
  • 批准号:
    355246-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Spin Filtering with Chiral Organic Molecules and Graphene: Towards Chiral Spintronics
手性有机分子和石墨烯的自旋过滤:迈向手性自旋电子学
  • 批准号:
    355246-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Spin Filtering with Chiral Organic Molecules and Graphene: Towards Chiral Spintronics
手性有机分子和石墨烯的自旋过滤:迈向手性自旋电子学
  • 批准号:
    355246-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Spin Filtering with Chiral Organic Molecules and Graphene: Towards Chiral Spintronics
手性有机分子和石墨烯的自旋过滤:迈向手性自旋电子学
  • 批准号:
    355246-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Axially heterostructured metal-organic hybrid nanowires with modulated diameter: engineering absorption and emission spectra of organics
直径调制的轴向异质结构金属有机杂化纳米线:有机物的工程吸收和发射光谱
  • 批准号:
    455288-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Spin Filtering with Chiral Organic Molecules and Graphene: Towards Chiral Spintronics
手性有机分子和石墨烯的自旋过滤:迈向手性自旋电子学
  • 批准号:
    355246-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Spin-labeling Electron Paramagnetic Resonance Methods for Measurements at Nanoscale Interfaces
用于纳米级界面测量的自旋标记电子顺磁共振方法
  • 批准号:
    2305172
  • 财政年份:
    2023
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Spin torque induced dynamics and spin fluctuation in nanoscale non-collinear antiferromagnets
纳米级非共线反铁磁体中的自旋扭矩引起的动力学和自旋涨落
  • 批准号:
    22K14558
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nanoscale detection of atomic layer spin-valley polarized excitons and revealing its local dynamics
原子层自旋谷极化激子的纳米级探测并揭示其局域动力学
  • 批准号:
    22K14597
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Spin Dynamics Measurements of Site-to-Site Variations in Hydration Water at Soft Nanoscale Interfaces
职业:软纳米级界面处水合水位点到位点变化的自旋动力学测量
  • 批准号:
    2146270
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging the effect of nanoscale static and dynamic disorder on topological spin currents
成像纳米级静态和动态无序对拓扑自旋电流的影响
  • 批准号:
    2749479
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Studentship
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Nanoscale Spin Filters
高效纳米级旋转过滤器
  • 批准号:
    RGPIN-2018-05127
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating spin-orbit coupling in nanoscale optical wavguides
研究纳米级光波导中的自旋轨道耦合
  • 批准号:
    540892-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Thermal stability and scaling of nanoscale spin-electronic devices based on novel inverse-Heusler alloys
职业:基于新型逆赫斯勒合金的纳米级自旋电子器件的热稳定性和缩放
  • 批准号:
    1846829
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了