New Directions in the Theory of Moduli
模理论的新方向
基本信息
- 批准号:RGPIN-2017-04156
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gromov-Witten invariants are important in String Theory, the physical theory according to which elementary particles behave like tiny strings, instead of points, as was believed since Newton. String Theory is the best candidate for the so-called Theory of Everything, which unifies all physical theories, in particular Einstein's theory of relativity and quantum field theory.******Recently, it was discovered that Gromov-Witten invariants are related to Donaldson-Thomas invariants. This connection is still conjectural, but it is very important, because Donaldson-Thomas invariants can explain many of the strange phenomena exhibited by Gromov-Witten invariants.******In my recent research I discovered something surprising about Donaldson-Thomas invariants. They behave like Euler characteristics. The Euler characteristic of a shape is a number which does not change if the shape is deformed as if it were made of rubber. The surface of a sphere, for example, has Euler characteristic 2. The surface of a donut shape has Euler characteristic 0. The fact that Donaldson-Thomas invariants are certain kinds of Euler characteristics has important consequences, also for Gromov-Witten invariants and hence for String Theory.******One goal of this research is to understand these Euler characteristics more deeply and make them a more flexible tool. They should not just be numbers, but numbers abstracted from some more complicated structure. Numbers are for counting things, but the things themselves are lost in the process of counting. The goal is to discover the things which are counted by the Euler characteristics which give rise to Donaldson-Thomas invariants.******Moduli spaces are multidimensional geometric shapes, each of whose points corresponds to a geometric object. For example, there is a moduli space of triangles up to similarity. Each point of this moduli space represents one triangle shape. Many mathematical or physical objects can be sorted into moduli spaces. In fact, Gromov-Witten invariants and Donaldson-Thomas invariants are numbers associated to various moduli spaces. The moduli space reflects properties such as symmetries and deformation behaviour of the objects being classified. ******The main purpose of this research is to study the geometry of moduli spaces. This sheds light on the numerical invariants, and deepens our understanding of the mathematics underlying physical theories such as String Theory. ******A particular goal of this research is to apply what we have learned about moduli spaces to number theory. There is a compelling analogy between number theory and geometry, in which prime numbers correspond to knots, for example. Exploiting this analogy will illuminate subtle questions in number theory.
Gromov-Witten不变量在弦论中很重要,根据弦论的物理理论,基本粒子的行为像微小的弦,而不是像牛顿那样认为的点。 弦理论是所谓的万物理论的最佳候选者,它统一了所有的物理理论,特别是爱因斯坦的相对论和量子场论。最近,人们发现Gromov-Witten不变量与Donaldson-Thomas不变量有联系。 这种联系仍然是推测性的,但它非常重要,因为唐纳森-托马斯不变量可以解释格罗莫夫-威滕不变量所表现出的许多奇怪现象。*在我最近的研究中,我发现了一些关于唐纳森-托马斯不变量的令人惊讶的东西。 它们表现得像欧拉特征线。形状的欧拉特征线是一个数字,如果形状变形,就像它是由橡胶制成的一样,它不会改变。 例如,球面的欧拉特征线为2。圆环形状的表面具有欧拉特征0。唐纳森-托马斯不变量是某些类型的欧拉特征线,这一事实有着重要的意义,对格罗莫夫-威滕不变量也是如此,因此对弦论也是如此。本研究的一个目标是更深入地理解这些欧拉特征,使它们成为一个更灵活的工具。 它们不应该只是数字,而是从某种更复杂的结构中抽象出来的数字。 数字是用来计数的,但在计数的过程中,事物本身却丢失了。我们的目标是发现欧拉特征数所计算的东西,这些特征数产生了唐纳森-托马斯不变量。模空间是多维几何形状,其每个点对应于一个几何对象。 例如,有一个模空间的三角形相似。 该模空间的每个点代表一个三角形。 许多数学或物理对象可以被分类到模空间中。 事实上,Gromov-Witten不变量和Donaldson-Thomas不变量是与各种模空间相关联的数。 模空间反映了被分类对象的对称性和变形行为等属性。* 本研究的主要目的是研究模空间的几何。 这揭示了数值不变量,并加深了我们对物理理论(如弦论)的数学基础的理解。 ** 本研究的一个特别目标是将我们对模空间的了解应用于数论。 在数论和几何学之间有一个令人信服的类比,例如,素数对应于结。 利用这个类比将阐明数论中的一些微妙问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Behrend, Kai其他文献
Motivic degree zero Donaldson-Thomas invariants
- DOI:
10.1007/s00222-012-0408-1 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:3.1
- 作者:
Behrend, Kai;Bryan, Jim;Szendroi, Balazs - 通讯作者:
Szendroi, Balazs
Donaldson-Thomas type invariants via microlocal geometry
- DOI:
10.4007/annals.2009.170.1307 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:4.9
- 作者:
Behrend, Kai - 通讯作者:
Behrend, Kai
Behrend, Kai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Behrend, Kai', 18)}}的其他基金
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2013
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Gromov-Witten and Donaldson-Thomas theory
格罗莫夫-维滕和唐纳森-托马斯理论的新方向
- 批准号:
172668-2012 - 财政年份:2012
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New directions in Gromov-Witten theory
格罗莫夫-维滕理论的新方向
- 批准号:
172668-2007 - 财政年份:2011
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
- 批准号:
2317241 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Continuing Grant
New Directions in Complexity Theory
复杂性理论的新方向
- 批准号:
RGPIN-2017-06399 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Complexity Theory
复杂性理论的新方向
- 批准号:
RGPIN-2017-06399 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual