New Topologically Inspired Directions in Higher Representation Theory

更高表示理论中受拓扑启发的新方向

基本信息

  • 批准号:
    2200419
  • 负责人:
  • 金额:
    $ 24.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The interaction and interplay between geometric and algebraic techniques have fueled many exciting developments throughout mathematics and theoretical physics. Inherent within many of these deep connections is the notion of symmetry. As we push the boundaries of mathematics to unexplored frontiers, it is becoming increasingly clear that a more refined notion of symmetry is required for the next generation of theories. This project leverages cutting-edge developments in geometry to uncover new algebraic structures governing these new "higher" symmetries. The project will also provide research training opportunities for students.Leveraging new insights gained through the interplay between low-dimensional topology and representation theory, this project details a program to achieve results not apparent through one specialization alone. The PI will introduce fundamentally new tools in higher representation theory inspired by advances in emerging areas of topology, including bordered Heegaard-Floer theory, odd link homologies, non-semisimple TQFT, and spectrafication (or stable homotopy refinements of link homologies). Transporting and reinterpreting these recent advances through a representation-theoretic lens will illuminate new connections and allow for extensions that are not only useful in advancing the field of representation theory but can also be back-fed into the study of low-dimensional topology and surrounding fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何和代数技术之间的相互作用和相互作用在数学和理论物理中推动了许多令人兴奋的发展。这些深层联系中固有的是对称的概念。当我们将数学的边界推向未知的边界时,越来越清楚的是,下一代理论需要更精确的对称概念。该项目利用几何学的前沿发展来揭示控制这些新的“更高”对称性的新代数结构。该项目还将为学生提供研究培训机会。利用通过低维拓扑和表示理论之间的相互作用获得的新见解,该项目详细介绍了一个程序,以实现仅通过一种专业化无法实现的结果。PI将从根本上引入高级表示理论的新工具,这些工具受到拓扑新兴领域进展的启发,包括边界heegard - flower理论、奇链路同调、非半简单TQFT和谱化(或链路同调的稳定同伦改进)。通过表征理论的透镜传递和重新解释这些最新的进展将阐明新的联系,并允许扩展,这不仅有助于推进表征理论领域,而且还可以反馈到低维拓扑和周围领域的研究中。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strands algebras and the affine highest weight property for equivariant hypertoric categories
等变超曲面类别的链代数和仿射最高权重性质
  • DOI:
    10.1016/j.aim.2022.108849
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lauda, Aaron D.;Licata, Anthony M.;Manion, Andrew
  • 通讯作者:
    Manion, Andrew
A Hermitian TQFT from a non-semisimple category of quantum $${\mathfrak {sl}(2)}$$-modules
来自量子非半简单类别的埃尔米特 TQFT $${mathfrak {sl}(2)}$$-模
  • DOI:
    10.1007/s11005-022-01570-x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Geer, Nathan;Lauda, Aaron D.;Patureau-Mirand, Bertrand;Sussan, Joshua
  • 通讯作者:
    Sussan, Joshua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Lauda其他文献

Aaron Lauda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Lauda', 18)}}的其他基金

Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
  • 批准号:
    2205730
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
  • 批准号:
    1902092
  • 财政年份:
    2019
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Topological Quantum Field Theory and Categorification
拓扑量子场论及其分类
  • 批准号:
    1806399
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
  • 批准号:
    1664240
  • 财政年份:
    2017
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
  • 批准号:
    1744232
  • 财政年份:
    2017
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
US-Mexico conference in representation theory and noncommutative algebra
美国-墨西哥表示论和非交换代数会议
  • 批准号:
    1446398
  • 财政年份:
    2014
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
CAREER: Interactions between knot homology and rep
职业:结同源性和重复之间的相互作用
  • 批准号:
    1255334
  • 财政年份:
    2013
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Categorification of Quantum Groups
量子群的分类
  • 批准号:
    0855713
  • 财政年份:
    2009
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323456
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Topologically Frustrated Polymer Dynamics and Phase Behavior of Polyzwitterions
拓扑受阻聚合物动力学和多两性离子的相行为
  • 批准号:
    2309539
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Topologically Enhanced Raman Spectroscopy
拓扑增强拉曼光谱
  • 批准号:
    2230400
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323457
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Discovering catalytic strategies for transition metal-catalyzed reactions to construct topologically complex organic scaffolds
发现过渡金属催化反应的催化策略以构建拓扑复杂的有机支架
  • 批准号:
    10714006
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
  • 批准号:
    2221326
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementing Topologically Protected Gigahertz Acoustic Circuits
合作研究:实现拓扑保护的千兆赫声电路
  • 批准号:
    2221822
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Scalable and Topologically Versatile Material Point Methods for Complex Materials in Multiphysics Simulation
AF:小型:协作研究:多物理场仿真中复杂材料的可扩展且拓扑通用的质点方法
  • 批准号:
    2153863
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Retroviral integration into topologically-interlocked DNAs to probe the role of DNA structure and screen viral inhibitors
逆转录病毒整合到拓扑连锁的 DNA 中,以探测 DNA 结构的作用并筛选病毒抑制剂
  • 批准号:
    21K05274
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了