Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface

使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面

基本信息

  • 批准号:
    RGPIN-2016-04137
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Human machine interface (HMI) will soon be embedded in every aspect of our society. One type of HMIs is used to capture, monitor, assist, and augment human motion. It is are now found in a vast array of different fields including, but not limited to, manufacturing, healthcare, fitness tracking, office ergonomics, and entertainment. Here, this type of HMI is called motion integration HMI (miHMI). Next generation miHMIs need to sense human motion intentions faster and more reliably than ever before. To achieve this goal, however, alternative sensor modalities beyond mechanical sensors, which are exclusively used currently, must be incorporated. Recently, electromyogram (EMG), the electric manifestation of muscle activities, has been investigated for this purpose. In theory, surface EMG (sEMG) is a better source for fast and reliable human motion intention estimation than mechanical sensors because 1) it always appears earlier than the corresponding mechanical signals; 2) it is always measureable, while in some cases mechanical signals are difficult or impossible to measure.***However, current sEMG processing framework can only achieve an extremely low signal-to-noise ratio (SNR), orders of magnitude lower than that of a standard mechanical sensor. This limitation prevents sEMG from reaching its full potential as a fast and accurate human motion intention estimator for next generation miHMIs. Although there are ways to enhance sEMG's SNR under the current processing framework, the improvement is marginal, and the result is nowhere near the SNR of standard mechanical sensors. As such, there is an imperative need for drastic improvements to the SNR of sEMG processing algorithms. To address this problem, I propose to take a radically different paradigm for processing sEMG with the Bayesian framework. ***The proposed research program will undertake a systematic investigation in the theory and application of the Bayesian framework in sEMG processing. The program will start from a well-defined generation model for sEMG, which the applicant had developed and successfully applied to the control of dexterous upper limb prosthesis (a specific type of miHMI). The model will be extended to incorporate more complex motor tasks. Then, probabilistic properties of various parameters of this model will be explicitly incorporated within Bayesian-based algorithms, resulting in model and tasks specific Bayesian algorithms for estimating motion intentions from sEMG. These algorithms will be examined, tested, and evaluated, in the context of estimating motor intentions from multi-channel sEMG. The performance of the algorithms will be gauged by estimation accuracy, online computation speed, and robustness against nonstationary factors. To ensure the practical applicability of the algorithm, special focus will be on the long term adaptive characteristic, both of the Bayesian algorithms and from the user.* **
人机界面(HMI)将很快嵌入到我们社会的各个方面。一种类型的HMI用于捕获、监视、辅助和增强人体运动。它现在被发现在大量不同的领域,包括但不限于,制造业,医疗保健,健身跟踪,办公室人体工程学和娱乐。在这里,这种类型的HMI被称为运动集成HMI(miHMI)。下一代miHMI需要比以往更快、更可靠地感知人类运动意图。然而,为了实现这一目标,必须结合目前唯一使用的机械传感器之外的替代传感器模态。最近,肌电图(EMG),肌肉活动的电表现,已经为此目的进行了研究。从理论上讲,表面肌电信号(sEMG)是比机械传感器更好的快速可靠的人体运动意图估计来源,因为1)它总是比相应的机械信号更早出现; 2)它总是可测量的,而在某些情况下机械信号很难或不可能测量。然而,目前的表面肌电信号处理框架只能实现极低的信噪比(SNR),比标准机械传感器低几个数量级。这种限制阻止了sEMG充分发挥其作为下一代miHMI的快速准确的人体运动意图估计器的潜力。虽然在当前的处理框架下有方法提高sEMG的SNR,但这种改进是微不足道的,并且结果与标准机械传感器的SNR相差甚远。因此,迫切需要大幅改善sEMG处理算法的SNR。为了解决这个问题,我建议采取一个完全不同的范式与贝叶斯框架处理表面肌电信号。* 拟议的研究计划将在表面肌电信号处理的贝叶斯框架的理论和应用进行系统的调查。该计划将从一个定义良好的sEMG生成模型开始,申请人已经开发并成功应用于灵巧上肢假肢(一种特定类型的miHMI)的控制。该模型将被扩展到包括更复杂的运动任务。然后,该模型的各种参数的概率属性将被明确纳入基于贝叶斯的算法,从而产生用于从sEMG估计运动意图的模型和任务特定的贝叶斯算法。这些算法将被检查,测试和评估,在从多通道表面肌电信号估计运动意图的背景下。算法的性能将通过估计精度、在线计算速度和对非平稳因素的鲁棒性来衡量。为了确保算法的实用性,将特别关注贝叶斯算法和用户的长期自适应特性。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang, Ning其他文献

High Bit Rate Fiber-Optic Transmission Using a Four-Chaotic-Semiconductor-Laser Scheme
使用四混沌半导体激光器方案的高比特率光纤传输
  • DOI:
    10.1109/lpt.2012.2194482
  • 发表时间:
    2012-06
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Li, Nianqiang;Pan, Wei;Luo, Bin;Yan, Lianshan;Zou, Xihua;Jiang, Ning;Xiang, Shuiying
  • 通讯作者:
    Xiang, Shuiying
The Impact of Data Vulnerability in Online Health Communities: An Institutional Assurance Perspective.
  • DOI:
    10.3389/fpsyg.2022.908309
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Gao, Wei;Wang, Huiling;Jiang, Ning
  • 通讯作者:
    Jiang, Ning
Pathogen quantitative efficacy of different spike-in internal controls and clinical application in central nervous system infection with metagenomic sequencing.
  • DOI:
    10.1128/spectrum.01139-23
  • 发表时间:
    2023-12-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fu, Zhangfan;Ai, Jingwen;Zhang, Haocheng;Cui, Peng;Xu, Tao;Zhang, Yumeng;Zhang, Yi;Wu, Honglong;Shen, Ao;Lin, Ke;Zhang, Miaoqu;Qiu, Chao;Jiang, Ning;Zhou, Yang;Zhang, Wenhong
  • 通讯作者:
    Zhang, Wenhong
Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer.
组织蛋白酶 K 通过 IL-17/CTSK/EMT 轴调节肿瘤生长和转移并介导去势抵抗性前列腺癌中 M2 巨噬细胞极化
  • DOI:
    10.1038/s41419-022-05215-8
  • 发表时间:
    2022-09-22
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Wu, Ning;Wang, YouZhi;Wang, KeKe;Zhong, BoQiang;Liao, YiHao;Liang, JiaMing;Jiang, Ning
  • 通讯作者:
    Jiang, Ning
Multi-day dataset of forearm and wrist electromyogram for hand gesture recognition and biometrics.
  • DOI:
    10.1038/s41597-022-01836-y
  • 发表时间:
    2022-11-30
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Pradhan, Ashirbad;He, Jiayuan;Jiang, Ning
  • 通讯作者:
    Jiang, Ning

Jiang, Ning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang, Ning', 18)}}的其他基金

In-home cardiac monitoring system for cardiac patients during a pandemic such as COVID-19
COVID-19 等大流行期间心脏病患者的家庭心脏监测系统
  • 批准号:
    551988-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Alliance Grants
Mobile ECG device, data collection and information processing (mECG solution)
移动心电图设备、数据采集和信息处理(mECG解决方案)
  • 批准号:
    503545-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Miniature ECG Acquisition and Processing for Stress assessment during Virtual Reality Applications
虚拟现实应用期间用于压力评估的微型心电图采集和处理
  • 批准号:
    531540-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Feasibility and practical considerations of using steady-state-visual evoked potential to control an augmented virtual reality environment
使用稳态视觉诱发电位控制增强虚拟现实环境的可行性和实际考虑
  • 批准号:
    537768-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Plus Grants Program
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
  • 批准号:
    493013-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
  • 批准号:
    493013-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Mobile ECG device, data collection and information processing (mECG solution)
移动心电图设备、数据采集和信息处理(mECG解决方案)
  • 批准号:
    503545-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Development Grants
Electrode position optimization of a wearable SSVEP-based brain-computer interface for non-verbal population
针对非语言人群的基于 SSVEP 的可穿戴脑机接口的电极位置优化
  • 批准号:
    522312-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
Computational cognitive stress assessment using video measurements
使用视频测量进行计算认知压力评估
  • 批准号:
    503133-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Engage Grants Program
A System for Integrated Measurements for Human Movement
人体运动综合测量系统
  • 批准号:
    RTI-2017-00099
  • 财政年份:
    2016
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Tools and Instruments

相似国自然基金

Sirt1通过调控Gli3 processing维持SHH信号促进髓母细胞瘤的发展及机制研究
  • 批准号:
    82373900
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
靶向Gli3 processing调控Shh信号通路的新型抑制剂治疗儿童髓母细胞瘤及相关作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Fellowship
Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Conference: 2024 Protein Processing, Trafficking and Secretion GRC/GRS
会议:2024 蛋白质加工、运输和分泌 GRC/GRS
  • 批准号:
    2419301
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Neuronal mechanisms for social information processing.
社会信息处理的神经机制。
  • 批准号:
    BB/Z514780/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Fellowship
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
Sensory processing during sleep
睡眠期间的感觉处理
  • 批准号:
    EP/Y032071/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Grant
Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
  • 批准号:
    2414674
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了